## **Bioresearch Communications**

Volume 04, Issue 02, July 2018

Journal Homepage: www.bioresearchcommunications.com

## Original Article

# Optimization of different carbon, nitrogen and amino acid substrates and their effects for bioethanol production by *Escherichia coli* DH5α

### Yasmin Akter<sup>1\*</sup>, Lolo Wal Marzan<sup>1</sup>, Md Amzad Hossain<sup>2</sup>, Yeasmeen Ali<sup>1</sup> and Md. Arifuzzaman<sup>3</sup>

<sup>1</sup>Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong- 4331, Bangladesh

<sup>2</sup>Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka 1100, Bangladesh <sup>3</sup>Department of Biochemistry and Molecular Biology, University of Science and Technology, Chittagong, Bangladesh

ABSTRACT: This study aims to discover the effect of different carbon, nitrogen and amino acid substrates for better ethanol production by *Escherichia coli* DH5 $\alpha$ , where pH 7.0 ± 0.5 and 37°C is suitable for their cell growth at 12 hours incubation period during 150 rpm. The effects of different carbon sources were assessed during the exponential phase of *E. coli* DH5 $\alpha$ , where complete consumption of different carbohydrates and amino acids were observed. Moreover, glucose with trehalose supplement induced cell growth and producing 0.15 ± 0.01 g/L ethanol at 28 hours shake flask culture measured by redox titration method. Ammonium sulphate and serin increased cell growth compared to other, while trehalose supplement with glucose (in M9 media) can increase cell growth and metabolite (ethanol) production. Therefore, this optimized and suitable condition for *E. coli* DH5 $\alpha$  might be a base study to develop industrial energy production to fulfill partial demand in future.

KEY WORDS: Escherichia coli DH5a, Optimization, Culture conditions,

Article History Received: 22 March 2018 Accepted: 25 May 2018



Bioresearch

Communications

Scan the QR code to see the online version or, visitwww.bioresearchcommunications.com Corresponding author Yasmin Akter Phone: +88-031-2606001-10; Fax: +88-031-2606145; Mobile: +88-01715266039. E. mail: yasminrinigeb@cu.ac.bd

Citation : Akter Y, Marzan L.W, Hossain M.A, Ali Y. and Md. Arifuzzaman. Optimization of different carbon, nitrogen and amino acid substrates and their effects for bioethanol Production by *Escherichia coli* DH 5 $\alpha$ . Biores Comm. **4(2)**, 578 -585.

#### INTRODUCTION

Trehalose, Bioethanol.

Petroleum fuel is now widely recognized as nonrenewable energy source because of their consumed supplies and the contribution to the shuffle of carbon dioxide in our environment<sup>1</sup>. The major concerns for developing new technologies to generate alternative fuels from renewable carbon sources have significant roles for the remedy of environmental pollution, costly use of fossil fuels<sup>2,3</sup>. Biofuel has drawn the attention as a sustainable energy source worldwide in recent years because they replace petroleum fuels as well as a number of environmental and economic benefits are claimed for it. Bioethanol as a biofuel has forthcoming possibilities to use as an alternative of fossil fuel. In order to make it cost and energy effective, the processes must utilize organisms to efficiently produce candidate fuels that can be optimized from a variety of feed stocks. *Escherichia coli* has become an important host organism for the microbial production of biofuels in part due to the ease at which this organism can be manipulated<sup>4</sup>. They can live on a wide variety of



substrates and perform mixed-acid fermentation in anaerobic conditions where subsequently can produce lactate, succinate, ethanol, acetate and carbon dioxide. When E. coli lives together with hydrogen-consuming organisms, such as methanogens or sulphate-reducing bacteria, the hydrogen is consumed which is produced in many pathways of mixed acid fermentation<sup>5</sup>. For ethanol fermentation, the technology has been advanced significantly. Promising prospects of ethanol fermentation are especially introduced including fermentation technology converting different carbon sources to ethanol by microorganism in large system<sup>6</sup>. In the laboratory condition, a bacterium must have an energy source consist of carbon and other required nutrients and a permissive range of physical conditions such as O<sub>2</sub> concentration, temperature, pH, etc. The nutritional requirements of a bacterium (as E. coli) are consists of C, H, O, S, Mg, Fe, Ca, Mn and traces of Zn, Co, Cu and Mo. The metabolic regulation in bacteria is maintained by a complex array of signal transduction systems where metabolic interactions and gene regulatory relationships by maintaining the balance of carbon and nitrogen metabolism<sup>7</sup>. The carbon and nitrogen sources are necessary for the growth and product formation in microbial cultivation [8] as *Escherichia coli* is capable of utilizing several compounds as carbon sources. However, as carbon source, glucose is preferred and its rapid utilization depends on the phosphotransferase system (PTS)<sup>9</sup>. So, the present study aims to investigate the culture conditions in response to different physical parameters (pH, temperature and incubation time) as well as carbon and nitrogen sources in shake flask batch culture due to optimize their cell growth and metabolite (ethanol) production. Thus understanding of E. coli metabolism in our study may help as a fundamental research for its subsequent industrial bioethanol production.

#### **MATERIALS AND METHODS**

#### **Bacterial strain**

In the present study, *E. coli* DH5 $\alpha$  (*dlacZ Delta M15 Delta* (lacZYA-argF) U169 *recA1 endA1hsdR17*(rK-mK+) *supE44 thi-1 gyrA96 relA1*<sup>10</sup> was used as a laboratory stock.

#### Media compositions

Micro-aerobic batch culture was carried out by using both Luria–Bertani (LB) and Mineral (M9) medium, where LB medium contained 10.0 g/L Peptone, 5.0 g/L Yeast extract and 5.0 g/L NaCl and M9 minimal medium contained 48 mM Na<sub>2</sub>HPO<sub>4</sub>, 22 mM KH<sub>2</sub>PO<sub>4</sub>, 10 mM NaCl, 30 mM (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>. The following components were filter sterilized and then added (per liter) with 1 ml of 1 M MgSO<sub>4</sub>, 1 ml of 0.1 mM CaCl<sub>2</sub>, 1 ml of 1 mg of Vitamin B1 and 10 ml of trace element solution containing (per liter). 0.55 g of CaCl<sub>2</sub>.2H<sub>2</sub>O, 1.67 g of FeCl<sub>3</sub>.6H<sub>2</sub>O, 0.10 g of MnCl<sub>2</sub>.4H<sub>2</sub>O, 0.17 g of ZnCl<sub>2</sub>, 0.043 g of CuCl<sub>2</sub>.2H<sub>2</sub>O, 0.06 g of CoCl<sub>2</sub>.2H<sub>2</sub>O and 0.06 g of Na<sub>2</sub>MoO<sub>4</sub>.2H<sub>2</sub>O. The carbon source glucose (10 g/L) was used for the micro-aerobic batch culture<sup>11</sup> and different carbon sources as dextrose, sucrose, galactose, trehalose, lactose were used as same concentration (10 g/L) instead of glucose. Different nitrogen sources (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> potassium nitrate and peptone were used as same concentrations. Several amino acids as serin, proline, glutamate, arginine were used as a supplement (0.001g/L) during batch culture.

#### **Culture conditions**

Microaerobic batch culture was carried out in Erlenmeyer flasks at 150 rpm, where the temperature was maintained at 37°C. The pH was adjusted at 7.0  $\pm$  0.1 with pH controller by the addition of 2.0 M HCl or 2.0 M NaOH. The inoculum was prepared by 100 µl transferring cells from a glycerol stock to 50 ml test tube containing 10 ml of LB medium. The culture was then incubated for 6 hours and 0.25 ml of culture broth was then transferred to a 125 ml Erlenmeyer conical flask containing 25 ml of LB or M9 medium.

#### Measurement of biomass concentrations

Cell concentration was measured by the optical density (OD) of the culture broth (at  $\lambda = 600$  nm) with a spectrophotometer (Shimadzu Co, Japan). After the batch culture, *E. coli* cells from 250 ml of culture were harvested by centrifugation and dried (pellet) at 60°C for 24 hours in a laboratory oven (KOR-6L05). After confirming that the weight of the dried material was constant, the dry cell weight per litre of culture was calculated from the measured weight. It was then converted to dry cell weight (DCW) per liter based on the relationship between OD<sub>600</sub> ~ DCW relationship (1 OD<sub>600</sub> ≈ 0.3 g/L)<sup>12</sup>.

#### Measurement of metabolite concentrations Glucose concentration

Glucose was measured according to Nelson's modification of Somogy's method  $(1944)^{13}$ , where the color intensity was measured (at  $\lambda = 500$  nm) in UV Spectrophotometer (Shimadzu Co,Japan) and compared with standard D-glucose.

#### **Ethanol concentration**

The supernatant was taken after 4-5 residence times where the steady state was ascertained and centrifuged it at 12000 rpm for 10 minutes. Then the aqueous portion was taken to measure ethanol concentration. A redox titration method with sodium thiosulphate was done according to Bennett et al.  $(1971)^{14}$  to measure ethanol.

#### Statistical analysis

Triplicate measurements were done in all cases during the observation and assessment of bacterial growth and metabolite production. Data was captured into Microsoft Excel Software, Version 2010 which used to calculate means and standard deviations. Student's ttest was applied to confirm the observed changes were statistically significant.



## RESULTS

#### Effects of incubation time

Micro-aerobic batch culture was conducted at 150 rpm and pH 7.0 in LB and M9 medium, where temperature was kept constant at 37°C. Total batch culture was run constantly for 16 hours and 9 samples were taken after every two hours interval (where 1<sup>st</sup> sampling time was just starting time of the batch cultivation). OD (optical

density) was measured (at  $\lambda$ = 600 nm) from those samples in a UV Spectrophotometer (Shimadzu Co, Japan). Finally, the rest of the supernatants were taken and centrifuged at 12000 rpm for 10 minutes and kept the liquid portion at 4°C for further use. After centrifugation the pellet was dried at 60°C for 24 hours to measure biomass. Then OD was converted to DCW and the result was input at excel worksheet (**Figure 1**)



Figure 1 Effects of incubation time on their growth of *Escherichia coli* DH5 $\alpha$  on different media. Triplicate measurements were done and compared in each case. Error bars indicate  $\pm$  SD

to compare the effects of incubation time in response to different nutrient media (LB and M9). In both LB and M9 media, 12 hours incubation time show the best DCW for *Escherichia coli* DH5 $\alpha$ .

#### Effects of incubation pH

Cell growth response during different culture pH (5.0, 6.0, 7.0, 7.5, 8.0 and 8.5) was studied at different

culture media (LB and M9), where rpm and temperature were adjusted at 150 and 37°C, respectively. Supernatants were taken at 12 hours and measured OD (at  $\lambda$ =600 nm) to compare the effects of incubation pH at different media [Figure 2(a, b)],



Figure 2 Effects of incubation pH on LB (a) and M9 (b) media

where the media with pH 7.0 shows the best bacterial cell growth for both LB and M9 media.

#### **Effects of temperature**

As the best incubation time and pH (12 hours and 7.0) already have been established (Figure 1 and 2), so our next target was to study and compare the effects of

incubation temperature. Micro-aerobic batch culture was ascertained at different temperature  $(28^{\circ}C \pm 0.5 \sim 45^{\circ}C \pm 0.5)$  in response to different culture media (LB and M9) for 12 hours, while pH and rpm was maintained at 7.0 and 150, respectively (**Figure 3**)



Figure 3 Effects on incubation temperature on their growth in different media



where 37°C was the optimized temperature for better cell growth of *E. coli* DH5 $\alpha$ .

#### Effects of different carbon sources (M9 media)

Micro-aerobic batch culture was conducted in M9 minimal medium to study the effects of different carbon sources (glucose, dextrose, galactose, sucrose

and lactose) on the growth of *Escherichia coli* DH5a at pH 7.0, and 150 rpm while incubation temperature and time were maintained at  $37^{\circ}$ C and 12 hours, respectively. Besides, effects of trehalose and lactose with glucose were also studied and compared (**Figure 4**)



Figure 4 Effects of different carbon sources in M9 media

where trehalose shows a significant effect with glucose for better cell growth comparing to other carbon sources.

#### Change of culture pH in response to different carbon sources (M9 media)

The effects of different carbon sources (glucose, sucrose, dextrose and lactose) on culture pH was assessed while initial pH and rpm was 7.0 and 150, respectively at  $37^{\circ}C \pm 0.5$  (Figure 5).



Figure 5 Change of culture pH under different carbon sources in M9 media

Batch cultures were run till 16 hours and samples were taken after every two hours interval. Finally OD was measured and data were compared.

#### Effects of nitrogen sources (M9 media)

Different nitrogen sources (peptone, ammonium sulphate and potassium nitrate) containing M9 medium were used to assess their effects on cell growth (DCW), where medium pH, rpm and temperature were maintained at 7.00, 150,  $37^{\circ}C \pm 0.5$ , respectively. The best cell growth was observed when ammonium sulphate used in M9 media as nitrogen sources (**Figure 6**).



Figure 6 Effects of different nitrogen sources on cell growth

#### Effects of amino acids

Several amino acids (serine, proline, glutamate and arginine) were used in M9 medium to determine the effects of amino acids on their growth, while medium pH, rpm and temperature was maintained at 7.00, 150,  $37^{\circ}C \pm 0.05$ , respectively and serin used in M9 media depicts better cell growth compared to others (**Figure 7**).





Figure 7 Effects of amino acids on the growth of E. coli DH5a

#### Determination of metabolite concentrations Assessment of glucose concentration

Glucose concentration was measured from the supernatants during micro aerobic batch cultures at every two hours interval in M9 media (glucose containing) according to Nelson's modification of Somogy's method (1944), while medium pH, rpm and temperature was maintained at 7.00, 150,  $37^{\circ}C \pm 0.5$  respectively. OD was measured (at  $\lambda$ =500 nm) and data was compared.

## Assessment of ethanol production by using different substrates

Redox titration method was followed after cell culture was reached at the end point of  $3^{rd}$  steady state (24-30 hours) to measure ethanol production.

The relationship between the moles of sodium thiosulfate and determined of ethanol was done as moles per litre by using the following equations:

 $\begin{array}{l} 6 \text{ mol of } S_2O_3^{\ 2^-} \equiv 1 \text{ mol of } Cr_2O_7^{\ 2^-} \\ 2 \text{ mol of } Cr_2O_7^{\ 2^-} \equiv 3 \text{ mol of } C_2H_5OH \\ \text{So, } 1 \text{ mol of } S_2O_3^{\ 2^-} \equiv 0.25 \text{ mol of } C_2H_5OH \end{array}$ 

However, after optimization of all parameters, the best ethanol production was measured in different carbon sources by keeping the all best optimized physical parameters (pH, Temperature, Incubation time) as well as nitrogen source (ammonium sulphate) and amino acid (serin) where trehalose with glucose as carbon source show the highest ethanol concentration (**Figure 8**).



Figure 8 Assessment of ethanol production using different substrate

The possible metabolite regulation mechanism of *E. coli* DH5α is briefly illustrated in (Figure 9).



Figure 9 Metabolic pathway analysis of E. coli DH5a for better ethanol production in different carbon sources

#### DISCUSSION

Production of dry cell weight (DCW) of *E. coli* DH5α in response to different incubation parameters



(incubation time, pH, temperature, different carbon, nitrogen and amino acid sources) were examined in LB and M9 culture media, as those are the most important determining factors for bacterial growth as well as for cellular gene expression<sup>15</sup>. 12 hours of incubation time shows the best cell growth (**Figure 1**), as well as in response to culture pH 7.0, it produced highest cell concentration at both LB and M9 culture media (**Figure 2**) as reported by Cofre et al,  $2012^{16}$  that, culture media optimization is an important step in the design of a fermented process. pH is an important key growth regulator in bacterial cellular system where H<sup>+</sup> concentration in media can change the total charge of plasma membrane that affects the entrance of essential nutrients into cell<sup>17</sup>.

Effects of temperature on cell growth are other significant characteristics of microorganisms<sup>18</sup> due to the relationship of microbial growth rate and culture temperature<sup>19</sup>. As temperature affects plasmid stability and also protein production<sup>20</sup>, culture temperature control is also more essential that support cell growth as well as product formation. Figure 3 shows suitable cell growth (3.72 g/L at LB and 1.37 g/L at M9 media) at 37°C among other different culture temperatures  $(28^{\circ}C \sim 45^{\circ}C)$ . Past studies showed that ethanol production is dependent on fermentation temperature and subsequently to its cell concentration  $(DCW)^{21}$ . So, it is very important to optimize a suitable culture temperature as fermentation process for ethanol production regulated by some enzymes, where high temperature can deactivate that enzyme<sup>22</sup> and ultimately makes slow down the ethanol production.

In our study, DCW production is ~3.1 times lower (P < 0.01) at 28°C and ~2.33 times lower (P < 0.01) at 45°C compared to culture temperature 37°C in M9 media, where decreased temperature is not much effective [~1.55 times lower (P < 0.01)] in the case of LB media. Besides, increased temperature may affect on their growth in LB media [~1.81 times lower (P <0.01)] (Figure 3). Previous report by sweet sorghum juice, immobilized yeast cell gave 75.79% ethanol at 28°C but the ethanol production was growing up to maximum yield 89.89% at 37°C<sup>23</sup>. Our research shows (Figure 3) the enhancement of cell mass at 37°C (for both cases), can lead to higher ethanol production<sup>24</sup> and eventually has a relationship with elevated ethanol production. Similar results also shown by Fotadar et al.,  $2005^{25}$  the optimal temperature for *E. coli* growth is 37°C.

Glucose is a preferred carbon source<sup>9</sup> for rapid utilization as monosaccharide in all bacterial cells. Supplementation can enhance sugar utilization<sup>26,27,28</sup> is similar to our study that lactose and trehalose were used as supplements with glucose separately (**Figure 4**) showed cell growth (~6.83 times and ~8.5 times higher) compared to while glucose used as a sole source of carbon in M9 media (P < 0.01 for both cases). According to Gomez et al., 2012<sup>29</sup>, when both

glucose and glycerol were present as carbon sources, glucose was utilized first and glycerol was used after glucose had been completely depleted.

Interestingly, lactose (a disaccharide containing glucose and galactose) is unable to be converted into glucose inside the cell due to the lacking of *lacZ* gene. In our study this may be the reason of lowest cell growth (**Figure 4**), also consistence with past field studies<sup>30</sup>. On the other hand while lactose used as a supplement with glucose, the reverse result was found (**Figure 4**). Trehalose supplement with glucose enhanced cell concentration  $(1.53 \pm 0.31 \text{ g/L})$  in *E. coli* DH5 $\alpha$  in M9 media (**Figure 4**) may lead to higher ethanol production<sup>24</sup> due to increased cell growth. In this case (**Figure 8**) ethanol was produced more comparatively glucose used as a sole carbon source at 28 hours.

Metabolic system initiated mainly by glucose converted from supplemented trehalose via trehalose-6-phosphate hydrolase<sup>31,32</sup> as well as via phosphotransferase system where TreS gene is responsible for trehalose degradation<sup>33</sup>. Trehalose catabolism proceeds via trehalase enzyme to produce two molecules of glucose<sup>34,35</sup>. Phosphorolysis of trehalose produce  $\beta$ -Glucose-1-phosphate, glucose and trehalose 6phosphate; trehalose 6-phosphate phosphorylase to glucose-1-phosphate and glucose-6-phosphate; trehalose-6-Phosphate hydrolase produce glucose-6-phosphate from trehalose-6-phosphate<sup>32,36</sup>. Metabolic flux analysis (Figure 9) shows the entry of trehalose into glycolytic pathway can convert glucose to continue glycolysis resulted to ethanol production from pyruvate by increasing initial glucose concentration inside the cell. In E. coli the trehalose biosynthesis operon can be induced by entry into stationary phase by  $cell^{37}$  as there is trehalose in the media as a supplement. Trehalose is converted to glucose may induce the production of ethanol at stationary phase. This conversion of E. coli to ethanolic fermentation may open new advantages for the production of recombinant products by using E. coli expression systems<sup>38</sup>.

The exogenous nitrogen source supplementation also enhanced ethanol production in *S. cerevisiae*<sup>26</sup>. In our study different nitrogen sources (**Figure 6**) were used where ammonium sulphate supplement induced cell growth in M9 media. In the case of serine used as an amino acid source increased cell growth in M9 media also consistence with past research, where use of amino acids and sterols have demonstrated higher ethanol yield<sup>34</sup> (**Figure 7**). *E. coli* DH5 $\alpha$  showed decreased cell growth significantly (**Figure 7**) while arginine used in M9 media in our research. Biosynthesis of arginine from glutamate is carried out by a series of reactions initiated by the acetylation of glutamate by *N*-acetyl glutamate synthetase (NAGS) encoded by *argA*<sup>39</sup>.



#### CONCLUSION

In this study, *Escherichia coli* DH5 $\alpha$  was used to observe better cell growth at optimized culture condition (pH, temperature, incubation time) and metabolite (ethanol) production under microaerobic condition using different carbon sources (glucose, sucrose, dextrose and lactose). Trehalose supplementation with glucose induced cell growth which enhanced subsequent ethanol production. Finally, this research might be helpful as a base study to formulate and develop industrial production of ethanol which will solve future energy crisis.

#### ACKNOWLADGEMENT

The authors are grateful to Research and Publication Office, University of Chittagong, Chittagong-4331, Bangladesh for partial financial assistance (Memo No. 567/2015; fiscal year 2014-2015).

#### **Conflict of interest**

No conflict of interest influenced in this research.

#### Authors' contribution

LWM designed and supervised the project and YAR carried out the laboratory experiments. All authors have contributed in various degrees to the analytical methods used and to the manuscript preparation.

#### REFERENCES

- 1. Hossain, A.B.M.S. and Salleh, A. 2008. Biodiesel fuel production from algae as renewable source of energy. *Amer. J. Biochem. Biotech.* **4** (3), 250-254.
- Hirschberg, S., Dones, R., Heck, T., Burgherr, P., Scheuler, W. and Bauer, C. 2006. Strength and weakness of current energy chains in a sustainable development perspective. *Int. J. Nuclic Power.* 51 (7), 447-457.
- 3. Kerr, R.A. 2007. Scientists tell policy makers we're all warming the world. *Science*, **315**, 754-757.
- 4. Clomburg, J.M. and Gonzalez, R. 2010. Biofuel production in *Escherichia coli*: the role of metabolic engineering and synthetic biology. *Appl. Microbiol. Biotech.* **86** (2), 419-434.
- 5. Medigan, M.T. and Martinko, J.M. 2006. Brock Biology of microorganisms, 11<sup>th</sup> edition.
- Broek, W.V.D., Cox, E., Oudega, B. and Goddeeris, B.M. 2000. The F4 fimbrial antigen of *Escherichia coli* and its receptors. *Vet. and Microbiol.* **71**, 223-244.
- Lee, S.Y., Lee, Y.K. and Chang, H.N. 1995. Stimulatory effects of amino acids and oleic acid on poly (3-hydroxybutyric acid) synthesis by recombinant *Escherichia coli*. J. Ferment. and *Bioengg.* 79, 177-180.
- 8. Alexander, J.N. 2007. Regulation of carbon and nitrogen metabolism: Adding regulation of ion channels and another second messenger to the mix. *Department of Biological Chemistry, University of Michigan Medical School*, **104**, 4243-4244.

- 9. Weissenborn, D.L., Wittekindt, N. and Larson, T.J. 1992. Structure and regulation of the glpFKoperon encoding glycerol diffusion facilitator and glycerol kinase of *Escherichia coli* K-12. *J. Biol.Chem.* **267**, 6122-6131.
- Taylor, R.G., Walker, D.C. and McInnes, R.R. 1993. *E. coli* host strains significantly affect the quality of small scale plasmid DNA preparations used for sequencing. *Nucl. Acids Res.* 21, 1677-1678.
- 11. Marzan, L.W. and Shimizu, K. 2011. Metabolic regulation of *Escherichia coli* and its phoB and phoR genes knockout mutants under phosphate and nitrogen limitations as well as at acidic condition. *Micro. cell fact.* **10(39)**, 1-15.
- 12. Peng, L. and Shimizu, K. 2003. Global metabolic regulation analysis for *Escherichia coli* K-12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement. *Appl. Microbiol. Biotech.* **61**(2), 163–178.
- 13. Nelson, N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. *J. Biol. Chem.* **153** (2), 375–380.
- 14. Bennett, S.W., Tellinghuisen, J.B. and Phillips, L.F. 1971. Absorption coefficients and ionization yields of some molecules at 58.4. *J. Phy. Chem.* 75, 719-721.
- 15. Yosef, N. and Regev, A. 2011. Impulse control: temporal dynamics in gene transcription. *Cell* **144**, 886–896.
- Cofre, O., Ramirez, M., Gomez, J.M. and Cantero, D. 2012. Optimization of culture media for ethanol production from glycerol by *Escherichia coli*. *Biomass and Bioenergy* **37**, 275-287.
- Lin, Y., Zhang, W., Li, C., Sakakibara, K., Tanaka, S. and Kong, H. 2012. Factors affecting ethanol fermentation using *Saccharomyces cerevisiae* BY4742. *Biomass and Bioenergy* 47, 395-401.
- Rosso, L., Lobry, J.R. and Flandrosis, J.P. 1993. An unexpected correlation between cardial temperatures of microbial growth highlighted by a new model. *J. Theor. Biol.* 162, 447-463.
- 19. Zwietering, M.H., Koos, J.T., Hasenack, B.E., Wit, C.J. and Vant Riet, K. 1991. Modeling of bacterial growth as a function of temperature. *Appl. Env. Microbiol.* **57**, 1094-1101.
- 20. Donovan, R.S., Robinson, C.W. and Glick, B.R. 1996. Review: Optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. *J. Ind. Microbiol.* **16**, 145-154.
- Mallouchos, A., Komaitis, M., Koutinas, A. and Kanellaki, M. 2003. Wine fermentations by immobilized and free cells at different temperatures: effect of immobilization and temperature on volatile by-products. *Food Chem.* **80** (1), 109–113.
- 22. Phisalaphong, M., Srirattana, N. and Tanthapanichakoon, W. 2006. Mathematical modeling to investigate temperature effect on kinetic



parameters of ethanol fermentation. J. Biochem. Eng. 28 (1), 36–43.

- 23. Liu, R. and Shen, F. 2008. Impacts of main factors on bioethanol fermentation from stalk juice of sweet sorghum by immobilized Saccharomyces cerevisiae (CICC 1308). Biores. Techn. 99 (4), 847-854.
- 24. Sankh, S.N. and Arvindekar, A.U. 2004. Availability of substratum enhances ethanol production in Saccharomyces. Biotechnol. Lett. 26, 1821-1824.
- 25. Fotadar, U., Zaveloff, P. and Terracio, L. 2005. Growth of *Escherichia coli* at elevated temperatures. J. Basic Microbiol. 45 (5), 403-404.
- 26. Hardee, S.M., Bankar, S.B., Ojamo, H., Granstrom, T., Singhal, R.S. and Survase, S.A. 2014. Continuous lignocellulosic ethanol production using Coleus forskohlii root hydrolysate. Fuel 126, 77-84.
- 27. Li, Y., Gao, K., Tian, S., Zhang, S. and Yang, X. for ethanol production from enzymatic hydrolysate of non-detoxified stean-exploded corn stover. Biores. Tech. 102 (22), 10548-10552.
- 28. Sankh, S.N., Deshpande, P.S. and Arvindekar, A.U. 2011. Improvement of ethanol production using Saccharomyces cerevisiae by enhancement of biomass and nutrient supplementation. Appl. Biochem. Biotech. 164 (8), 1237-1245.
- 29. Gomez, K.M., Flores, N., Castanedar, H.M., Bataller, G.M., Chavez, G.H. and Ramfrez, O. T. 2012. New insights into Escherichia metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol. Micro. Cell Fact. 11, 46.
- Plasmid transformation of Escherichia coli and other bacteria. Methods of Enzymology 204, 63-113.
- 31. Boos, W., Ehmann, U., Forkl, H., Klein, W., Rimmele, M. and Postma, P. 1990. Trehalose

transport and metabolism in Escherichia coli. J. Bacteriol. 172 (6), 3450-3461.

- 32. Rimmele, M. and Boos, W. 1994. Trehalose-6phosphate hydrolase of Escherichia coli. J. Bacteriol. 176 (18), 5654-5664.
- 33. Filipa, S.C., Rute, F.C., Nuno, B. and Helena, S. 2007. Biochemical and genetic characterization of trehalose pathways for metabolism in Propionibacterium freudenreichii and their role in stress response. Microbiology 153, 270-280.
- 34. Elbein, A.D., Pan, Y.T., Pastuszak, I. and Caroll, D. 2003. New insights on trehalose: a multifunctional molecule. Glycobiology 13 (4), 17-27.
- 35. Horlacher, R., Uhland, K., Klein, W., Ehrmann, M. and Boos, W. 1996. Characterization of a cytoplasmic Trehalase of Escherichia coli. J. Bacteriol. 178 (21), 6250-6257.
- 2011. Evaluation of Saccharomyces cerevisiae Y5 36. Andersson, U., Levander, F. and Radstrom, P. 2001. Trehalose-6-phosphate phosphorylase is part of a novel metabolic pathway for trehalose utilization in Lactococcus lactis. J. Biol. Chem. 276 (46), 42707-42713,.
  - 37. Hengge Aronis, R., Klein, W., Lange, R., Rimmele, M. and Boos, W. 1991. Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli. J. Bacteriol. 173 (24), 7918-7924.
  - coli 38. Ingram, L.O., Conway, T., Clark, D.P., Sewell, G.W. and Preston, J.F. 1987. Genetic engineering of ethanol production in Escherichia coli. Appl. Env. Microbiol. 53 (10), 2420-2425.
- 30. Hanahan, D., Jessee, J. and Bloom, F.R. 1991. 39. Petri, K., Walter, F., Persicke, M., Ruckert, C. and Kalinowski, J. 2013. A novel type of Nacetylglutamate synthase is involved in the first step of arginine biosynthesis in Corynebacterium glutamicum. BMC Genomics 14. 713.

