GENOMIC ANALYSIS TO ELUCIDATE THE ANTIBIOTIC RESISTANCE MECHANISM OF EXTREMELY DRUG-RESISTANT PSEUDOMONAS AERUGINOSA STRAINS ISOLATED FROM BANGLADESH

Authors

  • Fatimah Az Zahra Department of Biochemistry & Microbiology, North South University, Dhaka 1229, Bangladesh
  • Ishrat Jabeen Department of Biochemistry & Microbiology, North South University, Dhaka 1229, Bangladesh
  • Mohammed Jafar Uddin Department of Biochemistry & Microbiology, North South University, Dhaka 1229, Bangladesh
  • Nazmun Nahar Department of Biochemistry & Microbiology, North South University, Dhaka 1229, Bangladesh
  • Sohidul Islam Department of Biochemistry & Microbiology, North South University, Dhaka 1229, Bangladesh
  • Sabbir R. Shuvo Department of Biochemistry & Microbiology, North South University, Dhaka 1229, Bangladesh

DOI:

https://doi.org/10.3329/brc.v9i1.63601

Keywords:

Pseudomonas aeruginosa, whole-genome sequencing, multidrug-resistant, Bangladesh

Abstract

Multidrug-resistant P. aeruginosa has potential to cause nosocomial infections. In this study, whole-genome sequencing was performed of two extremely drug-resistant novel strains SRS1 and SRS4 isolated from Bangladesh. The size of draft genome of SRS1 is 6.8 Mbp, and 7.0 Mbp for SRS4. In silico analysis predicted that the genome of SRS1 has 82 and SRS4 has 75 antibiotic-resistant genes (ARGs). Antibiogram results revealed that both SRS1 and SRS4 were resistant to multiple members of the antibiotic groups of β−lactam, quinolones, and aminoglycosides families. In addition, the genomes of both SRS1 and SRS4 were predicted to have multiple mobile elements like prophages and plasmids. Comparative genome analysis with wildtype PAO1 and another drug-resistant P. aeruginosa strain JNQH-PA57 revealed that SRS1 and SRS4 contain more antibiotic resistance genes like AAC (6´)-II, ANT (2´´)-Ia, ANT (3´´)-IIa, OXA-395, PME-1, qacE∆1, tet(A), tet(D), VEB-9 than PAO1 and JNQH-PA57. This study shows the importance of the genomic study to understand the distribution of ARGs in Bangladeshi P. aeruginosa strains to demonstrate the mechanisms responsible for multi drug resistance.

References

Afgan, E. et al. (2018) ‘The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update’, Nucleic Acids Research, 46, pp. 537–544. Available at: https://doi.org/10.1093/nar/gky379.

Alcock, B.P. et al. (2020) ‘CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database’, Nucleic Acids Research, 48(D1), pp. D517--D525. Available at: https://doi.org/10.1093/nar/gkz935.

Azimi, L. and Lari, A.R. (2019) ‘Colistin-resistant Pseudomonas aeruginosa clinical strains with defective biofilm formation.’, GMS hygiene and infection control, 14, pp. 1–6. Available at: https://doi.org/10.3205/dgkh000328.

Carmeli, Y. et al. (1999) Health and Economic Outcomes of Antibiotic Resistance in Pseudomonas aeruginosa, JAMA Internal Medicine. Available at: https://jamanetwork.com/.

Chaudhary, R. et al. (2017) ‘Surgical Site Infections and Antimicrobial Resistance Pattern’, Journal of Nepal Health Research Council, 15(2), pp. 120–123. Available at: https://doi.org/10.3126/jnhrc.v15i2.18185.

CLSI (2021) Performance Standards for Antimicrobial Susceptibility Testing. 31st ed. CLSI supplement M100. Informational Supplement M100-S31., Journal of Services Marketing.

Drawz, S.M. and Bonomo, R.A. (2010) ‘Three decades of β-lactamase inhibitors’, Clinical Microbiology Reviews, 23(1), pp. 160–201. Available at: https://doi.org/10.1128/CMR.00037-09.

Goecks, J. et al. (2010) ‘Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences’, Genome Biology, 11(8), p. R86. Available at: https://doi.org/10.1186/gb-2010-11-8-r86.

Hao, M. et al. (2021) ‘Comparative genome analysis of multidrug-resistant Pseudomonas aeruginosa JNQH-PA57, a clinically isolated mucoid strain with comprehensive carbapenem resistance mechanisms’, BMC Microbiology, 21(1), p. 133. Available at: https://doi.org/10.1186/s12866-021-02203-4.

Haque, F. et al. (2022) ‘Whole-genome sequencing and comparative analysis of heavy metals tolerant Bacillus anthracis FHq strain isolated from tannery effluents in Bangladesh’, AIMS Microbiology, 8(2), pp. 227–239. Available at: https://doi.org/10.3934/microbiol.2022018.

Hoque, M.N. et al. (2022) ‘Genomic diversity and molecular epidemiology of a multidrug-resistant Pseudomonas aeruginosa DMC30b isolated from a hospitalized burn patient in Bangladesh’, Journal of Global Antimicrobial Resistance, 31, pp. 110–118. Available at: https://doi.org/10.1016/J.JGAR.2022.08.023.

Huang, W. et al. (2020) ‘Integrated genome-wide analysis of an isogenic pair of Pseudomonas aeruginosa clinical isolates with differential antimicrobial resistance to ceftolozane/tazobactam, ceftazidime/avibactam, and piperacillin/tazobactam’, International Journal of Molecular Sciences, 21(3), p. 1026. Available at: https://doi.org/10.3390/ijms21031026.

Ilbeigi, K. et al. (2021) ‘Molecular survey of mcr1 and mcr2 plasmid mediated colistin resistance genes in Escherichia coli isolates of animal origin in Iran’, BMC Research Notes, 14(1), p. 107. Available at: https://doi.org/10.1186/s13104-021-05519-6.

Jens, K. et al. (2010) ‘Genome Diversity of Pseudomonas aeruginosa PAO1 Laboratory Strains’, Journal of Bacteriology, 192(4), pp. 1113–1121. Available at: https://doi.org/10.1128/JB.01515-09.

Kerr, K.G. and Snelling, A.M. (2009) ‘Pseudomonas aeruginosa: a formidable and ever-present adversary’, Journal of Hospital Infection, 73(4), pp. 338–344. Available at: https://doi.org/10.1016/j.jhin.2009.04.020.

Klockgether, J. et al. (2011) ‘Pseudomonas aeruginosa genomic structure and diversity’, Front Microbiol, 13(2), p. 150. Available at: https://doi.org/10.3389/fmicb.2011.00150.

Laudy, A.E. et al. (2017) ‘Prevalence of ESBL-producing Pseudomonas aeruginosa isolates in Warsaw, Poland, detected by various phenotypic and genotypic methods’, PLOS ONE, 12(6), p. e0180121. Available at: https://doi.org/10.1371/JOURNAL.PONE.0180121.

Liu, W. et al. (2018) ‘Genetic Diversity, Multidrug Resistance, and Virulence of Citrobacter freundii From Diarrheal Patients and Healthy Individuals’, Front. Cell. Infect. Microbiol, 8, p. 233. Available at: https://doi.org/10.3389/fcimb.2018.00233.

Lu, S. et al. (2015) ‘Complete genome sequence of Pseudomonas aeruginosa PA1, isolated from a patient with a respiratory tract infection’, Genome Announcements, 3(6), pp. 3–4. Available at: https://doi.org/10.1128/genomeA.01453-15.

Mima, T. et al. (2007) ‘Identification and Characterization of TriABC-OpmH, a Triclosan Efflux Pump of Pseudomonas aeruginosa Requiring Two Membrane Fusion Proteins’, Journal of Bacteriology, 189(21), p. 7600. Available at: https://doi.org/10.1128/JB.00850-07.

Mittal, R. et al. (2009) ‘Urinary tract infections caused by Pseudomonas aeruginosa: A minireview’, Journal of Infection and Public Health, 2(3), pp. 101–111. Available at: https://www.sciencedirect.com/science/article/pii/S1876034109000586.

Mulcahy, L.R., Isabella, V.M. and Lewis, K. (2010) ‘Pseudomonas aeruginosa Biofilms in Disease’, J Hosp Infect, 362, pp. 19–24. Available at: https://doi.org/10.1007/s00248-013-0297-x.

Pang, Z. et al. (2019) ‘Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies’, Biotechnology Advances, 37(1), pp. 177–192. Available at:

https://doi.org/https://doi.org/10.1016/j.biotechadv.2018.11.013.

Poirel, L. et al. (2005) ‘Integron-Encoded GES-Type Extended-Spectrum β-Lactamase with Increased Activity toward Aztreonam in Pseudomonas aeruginosa’, Antimicrobial Agents and Chemotherapy, 49(8), p. 3593. Available at: https://doi.org/10.1128/AAC.49.8.3593-3597.2005.

Poole, K. (2000) ‘Resistance to beta-lactam antibiotics’, Cell. Mol. Life Sci., 6, pp. 12200–12223.

Qin, S. et al. (2022) ‘Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics’, Signal Transduction and Targeted Therapy, 7(1), p. 199. Available at: https://doi.org/10.1038/s41392-022-01056-1.

Rather, P.N. et al. (1992) ‘Genetic analysis of bacterial acetyltransferases: identification of amino acids determining the specificities of the aminoglycoside 6’-N-acetyltransferase Ib and IIa proteins’, Journal of bacteriology, 174(10), pp. 3196–3203. Available at: https://doi.org/10.1128/JB.174.10.3196-3203.1992.

Richter, M. et al. (2015) ‘JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison’, Bioinformatics, 32(6), pp. 929–931. Available at: https://doi.org/10.1093/bioinformatics/btv681.

Robicsek, A. et al. (2006) ‘Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase’, Nature medicine, 12(1), pp. 83–88. Available at: https://doi.org/10.1038/NM1347.

Sarkar, M. et al. (2019) ‘Isolation and Characterization of Bacteria from Sewage and Pond Water, Malda, India’, Acta Scientific Microbiology, 2, pp. 28–34. Available at: https://doi.org/10.31080/ASMI.2019.02.0394.

Stover, C.K. et al. (2000) ‘Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen’, Nature, 406(6799), pp. 959–964. Available at: https://doi.org/10.1038/35023079.

Subedi D, Vijay AK, W.M. et al. (2018) ‘Overview of mechanisms of antibiotic resistance in Pseudomonas aeruginosa: an ocular perspective’, Clin Exp Optom, 101(2), pp. 162–171. Available at: https://doi.org/10.1111/cxo.12621.

Subedi, D. et al. (2018) ‘Comparative genomics of clinical strains of Pseudomonas aeruginosa strains isolated from different geographic sites’, Scientific Reports 2018 8:1, 8(1), pp. 1–14. Available at: https://doi.org/10.1038/s41598-018-34020-7.

Sung, K. et al. (2021) ‘Dynamic adaptive response of Pseudomonas aeruginosa to clindamycin/rifampicin-impregnated catheters’, Antibiotics, 10(7), p. 752. Available at: https://doi.org/10.3390/antibiotics10070752.

Tawfik, A.F. et al. (2012) ‘Distribution of Ambler class A, B and D β-lactamases among Pseudomonas aeruginosa isolates’, Burns: journal of the International Society for Burn Injuries, 38(6), pp. 855–860. Available at: https://doi.org/10.1016/J.BURNS.2012.01.005.

Thacharodi, A. and Lamont, I.L. (2022) ‘Aminoglycoside-Modifying Enzymes Are Sufficient to Make Pseudomonas aeruginosa Clinically Resistant to Key Antibiotics’, Antibiotics, 11(7). Available at: https://doi.org/10.3390/ANTIBIOTICS11070884/S1.

Wang, Y. et al. (2020) ‘Resistance to ceftazidime–avibactam and underlying mechanisms’, Journal of Global Antimicrobial Resistance, 22, pp. 18–27. Available at: https://doi.org/10.1016/j.jgar.2019.12.009.

Xu, Z. et al. (2020) ‘Antibiotic Resistance Patterns of Pseudomonas spp. Isolated from Raw Milk Revealed by Whole Genome Sequencing’, Front Microbiol, 11, p. 1005. Available at: https://doi.org/10.3389/fmicb.2020.01005.

Yang, L. et al. (2011) ‘Inactivation of MuxABC-OpmB transporter system in Pseudomonas aeruginosa leads to increased ampicillin and carbenicillin resistance and decreased virulence’, The Journal of Microbiology, 49(1), pp. 107–114. Available at: https://doi.org/10.1007/s12275-011-0186-2.

Yu, T. et al. (2021) ‘Novel Chromosome-Borne Accessory Genetic Elements Carrying Multiple Antibiotic Resistance Genes in Pseudomonas aeruginosa’, Front Cell Infect Microbiol., 11, p. 638087. Available at: https://doi.org/10.3389/fcimb.2021.638087.

Downloads

Published

27-12-2022

How to Cite

Zahra, F. A., Jabeen, I., Uddin, M. J., Nahar, N., Islam, S., & Shuvo, S. R. (2022). GENOMIC ANALYSIS TO ELUCIDATE THE ANTIBIOTIC RESISTANCE MECHANISM OF EXTREMELY DRUG-RESISTANT PSEUDOMONAS AERUGINOSA STRAINS ISOLATED FROM BANGLADESH. Bioresearch Communications - (BRC), 9(01), 1208–1214. https://doi.org/10.3329/brc.v9i1.63601

Issue

Section

Original Article