PHENOTYPIC-GENOTYPIC FEATURES OF MDR PSEUDOMONAS AERUGINOSA AND ACINETOBACTER BAUMANNII FROM DHAKA, BANGLADESH

Authors

  • Nazrul Islam Clinical Microbiology and Immunology Laboratory, LSSD, ICDDRB
  • Dilruba Ahmed Clinical Microbiology and Immunology Laboratory, LSSD, ICDDRB
  • Nazmul Ahsan Dept of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
  • Chowdhury R Ahsan Dept. of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
  • Mahmuda Yasmin Dept. of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh

DOI:

https://doi.org/10.3329/brc.v9i2.67079

Keywords:

MDR, Pseudomonas aeruginosa, Acinetobacter baumannii, VIM, NDM-1

Abstract

Pseudomonas aeruginosa and Acinetobacter baumannii are one of the most common causes of MBL mediated morbidity and mortality throughout the world. Day-by-day these isolates are showing increasing resistance trends to different antimicrobial agents. But there are few data in Bangladesh, the study was designed to observe the pattern of antimicrobial resistance, prevalence of MBL, AmpC and finally phylogenetic distributions. A total of 200 isolates were analyzed in this study, comprising of 100 MDR-carbapenem resistant P. aeruginosa and 100 MDR-carbapenem resistant A. baumonnii. Isolates were tested for antimicrobial susceptibility, AmpC test, phenotypic and genotypic detection of MBL production. Antimicrobial susceptibility tests demonstrated that out of the 100 P. aeruginosa isolates, 99% were resistant to ceftriaxone and cefixime followed by ciprofloxacin/amikacin/netilmicin (94%), imipenem (93%) and meropenem (91%). On the other hand, 100% of the studied A. baumannii isolates were resistant to ceftriaxone, co-trimoxazole, cefixime and meropenem followed by imipenem (99%), ciprofloxacin (97%), amikacin (95%) and ceftazidime (94%). P. aeruginosa and A. baumannii showed 48% and 32% carbapenemase, 34% and 25% AmpC and 92% and 35% MBL positive, respectively. Phylogenetic analysis of blaVIM gene of 16 P. aeruginosa showed similarities with the sequences from the global origin. Phylogenetic analysis of the blaNDM-1 gene sequences from 5 A. baumannii isolates (5%) revealed that 4 sequences from strains formed distinct lineages with that of the stains from India, while only one was found to be closely related to the sequences from global sources. This study found a high percentage of MBL production in MDR-carbapenem resistant P. aeruginosa (92%) and A. baumannii (35%) isolates. These findings indicate significant concern given the predominant socio-economic factors that promote the rapid spread of antimicrobial resistance and infectious diseases in developing countries such as Bangladesh.

References

Aktaş, Z., and Kayacan, Ç. B (2008) Investigation of metallo-beta-lactamase producing strains of Pseudomonas aeruginosa and Acinetobacter baumannii by E-test, disk synergy and PCR. Scandinavian journal of infectious diseases 40(4): 320-325. https://doi.org/10.1080/00365540701704698

Al Bayssari, C., Diene, S. M., Loucif, L., Gupta, S. K., Dabboussi, F., Mallat, H., . . . Rolain, J. M (2014) Emergence of blaVIM-2 and IMP-15 carbapenemases and inactivation of oprD gene in carbapenem-resistant Pseudomonas aeruginosa clinical isolates from Lebanon. Antimicrobial agents and chemotherapy 58(8): 4966-4970. https://doi.org/ 10.1128/AAC.02523-13

Amudhan, M. S., U. Sekar, A. Kamalanathan and S. Balaraman (2012) blaIMP and blaVIM mediated carbapenem resistance in Pseudomonas and Acinetobacter species in India. The Journal of Infection in Developing Countries 6(11): 757-762. https://doi.org/10.3855/jidc.2268

Anwar, S., M. R. A. Miah, A. A. Saleh, H. Sattar and S. Ahmed (2010) Phenotypic detection of metallo-β-lactamase among the clinical isolates of imipenem resistant Pseudomonas and Acinetobacter in tertiary care hospitals of Dhaka city. Ibrahim Medical College Journal 4(2): 63-65. https://doi.org/10.3329/imcj.v4i2.6498

Bora, A., R. Sanjana, B. K. Jha, S. N. Mahaseth and K. Pokharel (2014) Incidence of metallo-beta-lactamase producing clinical isolates of Escherichia coli and Klebsiella pneumoniae in central Nepal. BMC research notes 7: 557. https://bmcresnotes.biomedcentral.com/articles/10.1186/1756-0500-7-557

Castanheira, M., Wanger, A., Kruzel, M., Deshpande, L. M., and Jones, R. N (2008) Emergence and clonal dissemination of OXA-24-and OXA-58-producing Acinetobacter baumannii strains in Houston, Texas: report from the SENTRY Antimicrobial Surveillance Program. Journal of clinical microbiology 46(9) : 3179-3180. https://doi.org/10.1128/JCM.00988-08

CLSI. Performance Standards for Antimicrobial Susceptibility Testing; 20th Informational Supplement M100-S20. Wayne, PA. 2012: Clinical and Laboratory Standards Institute.

Farzana, R., S. Shamsuzzaman and K. Z. Mamun (2013) Isolation and molecular characterization of New Delhi metallo-beta-lactamase-1 producing superbug in Bangladesh. The Journal of Infection in Developing Countries 7 : 161-168. https://jidc.org/index.php/journal/article/view/23492993

Guan, X., L. He, B. Hu, J. Hu, X. Huang, G. Lai, Y. Li, Y. Liu, Y. Ni and H. Qiu (2016) Laboratory diagnosis, clinical management and infection control of the infections caused by extensively drug-resistant Gram-negative bacilli: a Chinese consensus statement. Clinical Microbiology and Infection 22: S15-S25. https://doi.org/10.1016/j.cmi.2015.11.004

Hammami, S., Gautier, V., Ghozzi, R., Da Costa, A., Ben-Redjeb, S., and Arlet, G (2010) Diversity in blaVIM-2-encoding class 1 integrons and occasional blaSHV2a carriage in isolates of a persistent, multidrug-resistant Pseudomonas aeruginosa clone from Tunis. Clinical Microbiology and Infection 16 (2) : 189-193. https://doi.org/ 10.1111/j.1469-0691.2009.03023.x

Hasan, M. J. and S. Shamsuzzaman (2017) Distribution of adeB and NDM-1 genes in multidrug resistant Acinetobacter baumannii isolated from infected wound of patients admitted in a tertiary care hospital in Bangladesh. The Malaysian journal of pathology 39 : 277-283. http://www.mjpath.org.my/2017/v39n3/acinetobacter-baumannii.pdf

Irfan, S., Idrees, F., Mehraj, V., Habib, F., Adil, S., and Hasan, R (2008) Emergence of Carbapenem resistant Gram negative and vancomycin resistant Gram positive organisms in bacteremic isolates of febrile neutropenic patients: a descriptive study. BMC infectious diseases 8(1): 1-6. https://bmcinfectdis.biomedcentral.com/articles/10.1186/1471-2334-8-80

Islam, M., P. K. Talukdar, A. Hoque, M. Huq, A. Nabi, D. Ahmed, K. Talukder, M. Pietroni, J. Hays and A. Cravioto (2012) Emergence of multidrug-resistant NDM-1-producing Gram-negative bacteria in Bangladesh. European journal of clinical microbiology & infectious diseases 31: 2593-2600. https://doi.org/10.1007/s10096-012-1601-2

Kumar, S., G. Stecher and K. Tamura (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution 33: 1870-1874. https://doi.org/10.1093/molbev/msw054

Molton, J. S., P. A. Tambyah, B. S. Ang, M. L. Ling and D. A. Fisher (2013) The global spread of healthcare-associated multidrug-resistant bacteria: a perspective from Asia. Clinical infectious diseases 56(9): 1310-1318. https://doi.org/10.1093/cid/cit020

Noyal, M., G. Menezes, B. Harish, S. Sujatha and S. Parija (2009) Simple screening tests for detection of carbapenemases in clinical isolates of nonfermentative Gram-negative bacteria. Ind J Med Research 129: 707-712. http://web.a.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=0&sid=68c00481-93cf-4e73-9e69-01c90e2cb113%40sessionmgr4006

Page, M. I. and A. Badarau (2008). "The Mechanisms of Catalysis by Metallo" Bioinorganic chemistry and applications :2008. https://doi.org/10.1155/2008/576297

Sefraoui, I., Berrazeg, M., Drissi, M., and Rolain, J. M (2014) Molecular epidemiology of carbapenem-resistant Pseudomonas aeruginosa clinical strains isolated from western Algeria between 2009 and 2012. Microbial Drug Resistance 20(2): 156-161. https://doi.org/ 10.1089/mdr.2013.0161

Sheikh, A. F., S. Rostami, A. Jolodar, M. A. Tabatabaiefar, F. Khorvash, A. Saki, S. Shoja and R. Sheikhi (2014) Detection of metallo-beta lactamases among carbapenem-resistant Pseudomonas aeruginosa. Jundishapur journal of microbiology 7(11):2014. https://doi.org/10.5812/jjm.12289

Shirani, K., B. Ataei and F. Roshandel (2016) Antibiotic resistance pattern and evaluation of metallo-beta lactamase genes (BLAVIM and IMP) in Pseudomonas aeruginosa strains producing MBL enzyme, isolated from patients with secondary immunodeficiency. Advanced biomedical research 5: 2016. https://doi.org/10.4103/2277-9175.186986

Siarkou, V. I., Vitti, D., Protonotariou, E., Ikonomidis, A., and Sofianou, D (2009) Molecular epidemiology of outbreak-related Pseudomonas aeruginosa strains carrying the novel variant blaVIM-17 metallo-β-lactamase gene. Antimicrobial agents and chemotherapy 53(4): 1325-1330. https://doi.org/10.1128/AAC.01230-08

Yum, J. H., Yi, K., Lee, H., Yong, D., Lee, K., Kim, J. M., . . . Chong, Y (2002) Molecular characterization of metallo-b-lactamase-producing Acinetobacter baumannii and Acinetobacter genomospecies 3 from Korea: identification of two new integrons carrying the blaVIM-2 gene cassettes. Journal of Antimicrobial Chemotherapy 49: 837-840. https://doi.org/10.1093/jac/dkf043

Downloads

Published

21-06-2023

How to Cite

Islam, N., Ahmed, D., Ahsan, N., Ahsan, C. R., & Yasmin, M. (2023). PHENOTYPIC-GENOTYPIC FEATURES OF MDR PSEUDOMONAS AERUGINOSA AND ACINETOBACTER BAUMANNII FROM DHAKA, BANGLADESH. Bioresearch Communications - (BRC), 9(2), 1276–1284. https://doi.org/10.3329/brc.v9i2.67079

Issue

Section

Original Article