Anti-inflammatory and analgesic activities of the ethanolic extract of Seaweed Asparagopsis spp. Isolated from the Bay of Bengal, Bangladesh
DOI:
https://doi.org/10.3329/brc.v10i2.74584Keywords:
seaweed, Asparagopsis, analgesic activity, anti-inflammatory, phytochemicalsAbstract
The marine zone of Bangladesh covers a great diversity of natural ecosystems including a marine environment rich in commercially important seaweeds. Seaweeds are widely used in the pharmaceutical, cosmetics, chemical, antibacterial, and food industries globally. According to the Food and Agriculture Organization of the United Nations (FAO), China, Indonesia, Korea, the Philippines, and Japan are the top five nations in the world for seaweed production. In recent times, Bangladesh has initiated comprehensive research endeavours focused on seaweed, recognizing its immense potential across diverse sectors. Seaweed in Bangladesh is primarily harvested for various purposes, including food, medicine, and industrial applications. In this study, red seaweed Asparagopsis collected from the coast of Saint Martin’s island of the Bay of Bengal was tested for its bioactive properties like anti-inflammatory and analgesic activity. Anti-inflammatory test was done using carrageenan suspension and three analgesic tests e.g. hot plate test, acetic acid-induced writhing test, and formic acid-induced test were performed in mice model in the laboratory with 50% ethanol extract of Asparagopsis. Following in vivo testing, no significant activity was observed. However, Asparagopsis was found to be rich in phytochemicals like phenols, flavonoids, saponin, glycoside, steroids, tannins, and alkaloids suggesting its importance for future scientific study. This may create a door to a new world in the Blue Economy sector of Bangladesh.
References
Ahmad, H. (2019). Bangladesh Coastal Zone Management Status and Future Trends. https://doi.org/10.4172/2473-3350.1000466
Akter, M., Shohag, S., & Hossain, M. N. (2022a). In-Vivo Pharmacological Studies Of Hypnea Musciformis Found In The Coast Of Saint Martin Island Of Bangladesh. Bioresearch Communications, 9(1), 1237–1244. https://doi.org/10.3329/brc.v9i1.63604
Alim, M. A., Zaman, N. R., & Hossain, M. N. (2022). Investigation Of Phytochemical Properties Of The Methanolic Extract Of Rosenvingea Spp. Found In The North-Eastern Region Of The Bay Of Bengal. Bioresearch Communications, 9(1), 1252–1262. https://doi.org/10.3329/brc.v9i1.63606
Araújo, I. W. F., Chaves, H. V., Pachêco, J. M., Val, D. R., Vieira, L. V., Santos, R., Freitas, R. S., Rivanor, R. L., Monteiro, V. S., Clemente-Napimoga, J. T., Bezerra, M. M., & Benevides, N. M. B. (2017). Role of central opioid on the antinociceptive effect of sulfated polysaccharide from the red seaweed Solieria filiformis in induced temporomandibular joint pain. International Immunopharmacology, 44, 160–167. https://doi.org/10.1016/j.intimp.2017.01.005
Arulkumar, A., Satheeshkumar, K., Paramasivam, S., Rameshthangam, P., & Miranda, J. M. (2020). Chemical biopreservative effects of red seaweed on the shelf life of black tiger shrimp (Penaeus monodon). Foods, 9(5). https://doi.org/10.3390/foods9050634
Barbalace, M. C., Malaguti, M., Giusti, L., Lucacchini, A., Hrelia, S., & Angeloni, C. (2019). Anti-inflammatory activities of marine algae in neurodegenerative diseases. In International Journal of Molecular Sciences (Vol. 20, Issue 12). MDPI AG. https://doi.org/10.3390/ijms20123061
Basit, A., Shutian, T., Khan, A., Khan, S. M., Shahzad, R., Khan, A., Khan, S., & Khan, M. (2022). Anti-inflammatory and analgesic potential of leaf extract of Justicia adhatoda L. (Acanthaceae) in Carrageenan and Formalin-induced models by targeting oxidative stress. Biomedicine and Pharmacotherapy, 153. https://doi.org/10.1016/j.biopha.2022.113322
Beaumont, N. J., Austen, M. C., Atkins, J. P., Burdon, D., Degraer, S., Dentinho, T. P., Derous, S., Holm, P., Horton, T., van Ierland, E., Marboe, A. H., Starkey, D. J., Townsend, M., & Zarzycki, T. (2007). Identification, definition and quantification of goods and services provided by marine biodiversity: Implications for the ecosystem approach. Marine Pollution Bulletin, 54(3), 253–265. https://doi.org/10.1016/j.marpolbul.2006.12.003
Berri, M., Slugocki, C., Olivier, M., Helloin, E., Jacques, I., Salmon, H., Demais, H., Le Goff, M., & Collen, P. N. (2016). Marine-sulfated polysaccharides extract of Ulva armoricana green algae exhibits an antimicrobial activity and stimulates cytokine expression by intestinal epithelial cells. Journal of Applied Phycology, 28(5), 2999–3008. https://doi.org/10.1007/s10811-016-0822-7
Bin Emran, T. (2015a). Phytochemical, Antimicrobial, Cytotoxic, Analgesic and Anti-Inflammatory Properties of Azadirachta Indica: A Therapeutic Study. Journal of Bioanalysis & Biomedicine, 01(s12). https://doi.org/10.4172/1948-593x.s12-007
Bin Emran, T. (2015b). Phytochemical, Antimicrobial, Cytotoxic, Analgesic and Anti-Inflammatory Properties of Azadirachta Indica: A Therapeutic Study. Journal of Bioanalysis & Biomedicine, 01(s12). https://doi.org/10.4172/1948-593x.s12-007
Chaiklahan, R., Srinorasing, T., Chirasuwan, N., Tamtin, M., & Bunnag, B. (2020). The potential of polysaccharide extracts from Caulerpa lentillifera waste. International Journal of Biological Macromolecules, 161, 1021–1028. https://doi.org/10.1016/j.ijbiomac.2020.06.104
Chowdhury, K. R., Alim, M. A., Zaman, N. R., Nayem, A., Audri, E. M., Mondal, P., & Hossain, M. N. (2023a). Screening of Anti-inflammatory and Analgesic Activities of Caulerpa Racemosa from the Bay of Bengal, Bangladesh. Bioresearch Communications, 9(2), 1330–1339. https://doi.org/10.3329/brc.v9i2.67090
Gómez-Guzmán, M., Rodríguez-Nogales, A., Algieri, F., & Gálvez, J. (2018). Potential role of seaweed polyphenols in cardiovascular-associated disorders. In Marine Drugs (Vol. 16, Issue 8). MDPI AG. https://doi.org/10.3390/md16080250
Guedes, E. A. C., dos Santos Araújo, M. A., Souza, A. K. P., de Souza, L. I. O., de Barros, L. D., de Albuquerque Maranhão, F. C., & Sant’Ana, A. E. G. (2012). Antifungal Activities of Different Extracts of Marine Macroalgae Against Dermatophytes and Candida Species. Mycopathologia, 174(3), 223–232. https://doi.org/10.1007/s11046-012-9541-z
Hardouin, K., Bedoux, G., Burlot, A. S., Donnay-Moreno, C., Bergé, J. P., Nyvall-Collén, P., &Bourgougnon, N. (2016). Enzyme-assisted extraction (EAE) for the production of antiviral and antioxidant extracts from the green seaweed Ulva armoricana (Ulvales, Ulvophyceae). Algal Research, 16, 233–239. https://doi.org/10.1016/j.algal.2016.03.013
Islam, K. S., Xue, X.-z., & Rahman, M. M. (2009). Successful Integrated Coastal Zone Management (ICZM) program model of a developing country (Xiamen, China)–implementation in Bangladesh perspective. Journal of Wetlands Ecology, 35-41.
Ismail, M. M., Alotaibi, B. S., & EL-Sheekh, M. M. (2020). Therapeutic uses of red macroalgae. In Molecules (Vol. 25, Issue 19). MDPI AG. https://doi.org/10.3390/molecules25194411
Ismail, M. M., Gheda, S. F., & Pereira, L. (2016). Variation in bioactive compounds in some seaweeds from Abo Qir bay, Alexandria, Egypt. RendicontiLincei, 27(2), 269–279. https://doi.org/10.1007/s12210-015-0472-8
Karimzadeh, K., Ramzanpoor, M., &Keihankhadiv, S. (2020). Antinociceptive and Anti-inflammatory Effects of Methanolic Extract of Laurencia caspica. International Journal of Basic Science in Medicine, 5(2), 54–60. https://doi.org/10.34172/ijbsm.2020.11
Khairinisa, M. A., Latarissa, I. R., Athaya, N. S., Charlie, V., Musyaffa, H. A., Prasedya, E. S., &Puspitasari, I. M. (2023). Potential Application of Marine Algae and Their Bioactive Metabolites in Brain Disease Treatment: Pharmacognosy and Pharmacology Insights for Therapeutic Advances. In Brain Sciences (Vol. 13, Issue 12). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/brainsci13121686
Kijjoa, A., & Sawangwong, P. (2004). Drugs and Cosmetics from the Sea. Mar. Drugs, 2, 73–82. www.mdpi.net/marinedrugs/
Kinley, R. D., Martinez-Fernandez, G., Matthews, M. K., de Nys, R., Magnusson, M., & Tomkins, N. W. (2020). Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. Journal of Cleaner Production, 259. https://doi.org/10.1016/J.JCLEPRO.2020.120836
M I Damaj, W. G. M. D. A. B. R. M. (1999). Antinociceptive and pharmacological effects of metanicotine, a selective nicotinic agonist - PubMed. In Journal of Pharmacology and Experimental Therapeutics (Vol. 1, Issue 291, pp. 390–398). https://pubmed.ncbi.nlm.nih.gov/10490929/
Neethu, P., Suthindhiran, K., & Jayasri, M. (2017a). Antioxidant and antiproliferative activity of Asparagopsis taxiformis. Pharmacognosy Research, 9(3), 238–246. https://doi.org/10.4103/pr.pr_128_16
Paiva, L., Lima, E., Patarra, R. F., Neto, A. I., & Baptista, J. (2014). Edible Azorean macroalgae as source of rich nutrients with impact on human health. Food Chemistry, 164, 128–135. https://doi.org/10.1016/J.FOODCHEM.2014.04.119
Palumbi, S. R., Sandifer, P. A., Allan, J. D., Beck, M. W., Fautin, D. G., Fogarty, M. J., Halpera, B. S., Incze, L. S., Leong, J. A., Norse, E., Stachowicz, J. J., & Wall, D. H. (2009). Managing for ocean biodiversity to sustain marine ecosystem services. In Frontiers in Ecology and the Environment (Vol. 7, Issue 4, pp. 204–211). https://doi.org/10.1890/070135
Pérez, M. J., Falqué, E., & Domínguez, H. (2016). Antimicrobial action of compounds from marine seaweed. In Marine Drugs (Vol. 14, Issue 3). MDPI AG. https://doi.org/10.3390/md14030052
Rao, P., C. Periyasamy, et al. (2018). "Seaweeds: distribution, production and uses." Bioprospecting of algae. Society for Plant Research: 59-78.
Ruslin, M., Akbar, F. H., Hajrah-Yusuf, A. S., & Subehan. (2018). Analysis of total flavonoid levels in brown algae (Sargassum sp. and Padina sp.) as analgesic drug therapy. Asian Journal of Pharmaceutical and Clinical Research, 11(7), 81–83. https://doi.org/10.22159/ajpcr.2018.v11i7.25657
Shirajul, M., Sarkar, I., Kamal, M., Hasan, M. M., & Hossain, M. I. (2016). Agriculture, livestock and fisheries present status of naturally occurring seaweed flora and their utilization in Bangladesh article info abstract. In Res. Agric. Livest. Fish (Vol. 3, Issue 1). www.agroaid-bd.org/ralf,
Shojaii, A., Motaghinejad, M., &Motevalian, M. (2015). Evaluation of Anti-inflammatory and Analgesic Activity of the Extract and Fractions of Astragalus hamosus in Animal Models. In Article in Iranian Journal of Pharmaceutical Research. https://www.researchgate.net/publication/270651477
Syakilla, N., George, R., Chye, F. Y., Pindi, W., Mantihal, S., Wahab, N. A., Fadzwi, F. M., Gu, P. H., &Matanjun, P. (2022a). A Review on Nutrients, Phytochemicals, and Health Benefits of Green Seaweed, Caulerpa lentillifera. In Foods (Vol. 11, Issue 18). MDPI. https://doi.org/10.3390/foods11182832
Torres, M. D., Flórez-Fernández, N., & Domínguez, H. (2019). Integral utilization of red seaweed for bioactive production. In Marine Drugs (Vol. 17, Issue 6). MDPI AG. https://doi.org/10.3390/md17060314
Vieira, E. F., Soares, C., Machado, S., Correia, M., Ramalhosa, M. J., Oliva-teles, M. T., Paula Carvalho, A., Domingues, V. F., Antunes, F., Oliveira, T. A. C., Morais, S., &Delerue-Matos, C. (2018). Seaweeds from the Portuguese coast as a source of proteinaceous material: Total and free amino acid composition profile. Food Chemistry, 269, 264–275. https://doi.org/10.1016/J.FOODCHEM.2018.06.145
Wan, A. H. L., Davies, S. J., Soler-Vila, A., Fitzgerald, R., & Johnson, M. P. (2019). Macroalgae as a sustainable aquafeed ingredient. In Reviews in Aquaculture (Vol. 11, Issue 3, pp. 458–492). Wiley-Blackwell. https://doi.org/10.1111/raq.12241
Wang, X., Zhang, Z., Yao, Z., Zhao, M., & Qi, H. (2013). Sulfation, anticoagulant and antioxidant activities of polysaccharide from green algae Enteromorpha linza. International Journal of Biological Macromolecules, 58, 225–230. https://doi.org/10.1016/J.IJBIOMAC.2013.04.005
Zanolla, M., Altamirano, M., Carmona, R., De La Rosa, J., Sherwood, A., &Andreakis, N. (2015). Photosynthetic plasticity of the genus Asparagopsis (Bonnemaisoniales, Rhodophyta) in response to temperature: implications for invasiveness. Biological Invasions, 17(5), 1341–1353. https://doi.org/10.1007/s10530-014-0797-8
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Author(s) will retain the copyright of their own articles. By submitting the article to Bioresearch Communications (BRC), the author(s) have granted the BRC for the use of the article.