Calorie Restriction Extends Lifespan in Yeast Independently of GCN5
DOI:
https://doi.org/10.3329/brc.v12i1.86765Keywords:
Yeast, Calorie restriction, GCN5, Aging and MitochondriaAbstract
Calorie restriction (CR) has been shown to increase longevity in various animals; however, the mechanisms by which it affects chromatin-modifying factors remain poorly understood. GCN5, a histone acetyltransferase, is a vital regulator of transcription that responds to metabolic and stress signals, linking nutrient signaling to chromatin remodeling, but the extent of its necessity in promoting longevity through caloric restriction (CR) has yet to be completely defined. We investigated chronological lifespan (CLS), growth dynamics, respiratory efficiency, oxidative stress tolerance, mitochondrial DNA (mtDNA) mutation rate, and mtDNA abundance in a yeast gcn5Δ mutant under both normal and glucose-restricted conditions in order to elucidate GCN5-independent effects of CR. Under CR, the mutant showed a significant increase in CLS along with a decreased growth rate and improved survival in the stationary phase. Despite the loss of GCN5, calorie restriction enhanced respiratory efficiency on non-fermentable substrates, improved survival under oxidative stress, increased mtDNA abundance, and reduced mtDNA mutations, suggesting improved mitochondrial integrity. Altogether, these results showed that CR can compensate for GCN5's absence by triggering alternative nutrient-sensing and mitochondrial maintenance systems. This information offers insights into chromatin-independent pathways that could be used to mitigate aging and mitochondrial dysfunction in higher organisms
References
Arlia-ciommo, A. et al. (2018) ‘Caloric restriction delays yeast chronological aging by remodeling carbohydrate and lipid metabolism , altering peroxisomal and mitochondrial functionalities , and postponing the onsets of apoptotic and liponecrotic modes of regulated cell death’, 9(22), pp. 16163–16184.
Bagamery, L.E. et al. (2020) ‘Article A Putative Bet-Hedging Strategy Buffers Budding Yeast against Environmental Instability ll A Putative Bet-Hedging Strategy Buffers Budding Yeast against Environmental Instability’, Current Biology, 30(23), pp. 4563-4578.e4. Available at:
https://doi.org/10.1016/j.cub.2020.08.092.
Barja, G. (2004) ‘Free radicals and aging’, 27(10). Available at: https://doi.org/10.1016/j.tins.2004.07.005.
Bhatti, J.S. et al. (2018) ‘Bhatti, Jasvinder Singh Bhatti’, 1863(5), pp. 1066–1077. Available at:
https://doi.org/10.1016/j.bbadis.2016.11.010.Mitochondrial.
Bisschops, M.M.M. et al. (2017) ‘Biochimica et Biophysica Acta Extreme calorie restriction in yeast retentostats induces uniform non-quiescent growth arrest’, BBA - Molecular Cell Research, 1864(1), pp. 231–242. Available at: https://doi.org/10.1016/j.bbamcr.2016.11.002.
Brownell, J.E. et al. (1996) ‘Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation’, Cell, 84(6), pp. 843–851. Available at: https://doi.org/10.1016/S0092-8674(00)81063-6.
Burtner, C.R., Murakami, C.J. and Kennedy, B.K. (2010) ‘A molecular mechanism of chronological aging in yeast’, 8(8), pp. 1256–1270.
Canzonetta, C. et al. (2016) ‘SAGA complex and Gcn5 are necessary for respiration in budding yeast’, Biochimica et Biophysica Acta - Molecular Cell Research, 1863(12), pp. 3160–3168. Available at:
https://doi.org/10.1016/j.bbamcr.2016.10.002.
Chadwick, S.R. et al. (2016) ‘A Toolbox for Rapid Quantitative Assessment of Chronological Lifespan and Survival in Saccharomyces cerevisiae’, (13). Available at: https://doi.org/10.1111/tra.12391.
Choi, J., Choi, K. and Lee, C. (2011) ‘Biochemical and Biophysical Research Communications Caloric restriction improves efficiency and capacity of the mitochondrial electron transport chain in Saccharomyces cerevisiae’, Biochemical and Biophysical Research Communications, 409(2), pp. 308–314. Available at: https://doi.org/10.1016/j.bbrc.2011.05.008.
Cirigliano, A. et al. (2025) ‘Csn5 Depletion Reverses Mitochondrial Defects in GCN5-Null Saccharomyces cerevisiae’, pp. 1–17.
Civitarese, A.E. et al. (2007) ‘Calorie Restriction Increases Muscle Mitochondrial Biogenesis in Healthy Humans’, 4(3). Available at: https://doi.org/10.1371/journal.pmed.0040076.
Conrad, M. et al. (2014) ‘Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae’, 38, pp. 254–299. Available at: https://doi.org/10.1111/1574-6976.12065.
Cozzi, V. et al. (2005) ‘Calorie Restriction Promotes Mitochondrial Biogenesis by Inducing the Expression of eNOS Calorie Restriction Promotes Mitochondrial Biogenesis by Inducing the Expression of eNOS’, (November). Available at: https://doi.org/10.1126/science.1117728.
Diet, K. (2021) ‘Effects of Calorie Restriction on Health Span and Insulin Resistance: Classic Calorie Restriction Diet vs. Ketosis-Inducing Diet’.
Doudican, N.A. et al. (2005) ‘Oxidative DNA Damage Causes Mitochondrial Genomic Instability in Saccharomyces cerevisiae’, 25(12), pp. 5196–5204. Available at: https://doi.org/10.1128/MCB.25.12.5196.
Dueñas-Sánchez, R. et al. (2012) ‘Transcriptional regulation of fermentative and respiratory metabolism in Saccharomyces cerevisiae industrial bakers’ strains’, FEMS Yeast Research, 12(6), pp. 625–636. Available at:
https://doi.org/10.1111/j.1567-1364.2012.00813.x.
Feng, T., Yu, H. and Ye, L. (2025) ‘Mechanisms and Strategies for Engineering Oxidative Stress Resistance in Saccharomyces cerevisiae’, Chem & Bio Engineering, 2, pp. 409–422. Available at: https://doi.org/10.1021/cbe.5c00021.
Galeota-sprung, B., Fernandez, A. and Sniegowski, P. (2021) ‘Changes to the mtDNA copy number during yeast culture growth’.
Gaupel, A., Begley, T.J. and Tenniswood, M. (2015) ‘Gcn5 Modulates the Cellular Response to Oxidative Stress’, 1992(March), pp. 1982–1992. Available at:
https://doi.org/10.1002/jcb.25153.
Gray, J. V et al. (2004) ‘“ Sleeping Beauty ”: Quiescence in Saccharomyces cerevisiae †’, 68(2), pp. 187–206. Available at: https://doi.org/10.1128/MMBR.68.2.187.
Gredilla, R. (2011) ‘DNA Damage and Base Excision Repair in Mitochondria and Their Role in Aging’, 2011, pp. 7–9. Available at: https://doi.org/10.4061/2011/257093.
Gregorio, S.E. Di and Duennwald, M.L. (2021) ‘Yeast as a model to study protein misfolding in aged cells’, (March). Available at: https://doi.org/10.1093/femsyr/foy054.
Groeger, G., Quiney, C. and Cotter, T.G. (2009) ‘Hydrogen Peroxide as a Cell-Survival Signaling Molecule’, 11(11).
Haque, M.E. et al. (2021) ‘The GCN5: Its biological functions and therapeutic potentials’, Clinical Science, 135(1), pp. 231–257. Available at: https://doi.org/10.1042/CS20200986.
Herman, P.K. (no date) ‘Stationary phase in yeast’, pp. 602–607. Available at:
https://doi.org/10.1016/S1369-5274(02)00377-6.
Hsieh, W.C. et al. (2022) ‘Glucose starvation induces a switch in the histone acetylome for activation of gluconeogenic and fat metabolism genes’, Molecular Cell, 82(1), pp. 60-74.e5. Available at: https://doi.org/10.1016/j.molcel.2021.12.015.
Hunt, N. et al. (2006) ‘Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency’, (March). Available at: https://doi.org/10.1073/pnas.0510452103.
Hurrle, S. and Hsu, W.H. (2017) ‘ScienceDirect The etiology of oxidative stress in insulin resistance’, Biomedical Journal, 40(5), pp. 257–262. Available at:
https://doi.org/10.1016/j.bj.2017.06.007.
Ionut, A., Martina, G. and Ilenia, M. (2023) ‘The Saccharomyces cerevisiae mitochondrial DNA polymerase and its contribution to the knowledge about human POLG-related disorders’, (May), pp. 983–1002. Available at: https://doi.org/10.1002/iub.2770.
Jiménez, J. et al. (2015) ‘Live fast , die soon : cell cycle progression and lifespan in yeast cells’, 2(3), pp. 62–67. Available at: https://doi.org/10.15698/mic2015.03.191.
Kaniak-Golik, A. and Skoneczna, A. (2015) ‘Mitochondria-nucleus network for genome stability’, Free Radical Biology and Medicine, 82, pp. 73–104. Available at: https://doi.org/10.1016/j.freeradbiomed.2015.01.013.
Kim, I., Rodriguez-enriquez, S. and Lemasters, J.J. (2009) ‘Minireview: Selective Degradation of Mitochondria by Mitophagy’, 462(1), pp. 245–253. Available at: https://doi.org/10.1016/j.abb.2007.03.034.Minireview.
Kumar, R. and Srivastava, S. (2016) ‘Quantitative proteomic comparison of stationary / G 0 phase cells and tetrads in budding yeast’, Nature Publishing Group, (April), pp. 1–15. Available at: https://doi.org/10.1038/srep32031.
Kwon, Y., Lee, S. and Lee, C. (2017) ‘Molecules and Cells Caloric Restriction-Induced Extension of Chronological Lifespan Requires Intact Respiration in Budding Yeast’, Molecules and Cells, 40(4), pp. 307–313. Available at: https://doi.org/10.14348/molcells.2017.2279.
Lanza, I.R. et al. (2012) ‘Chronic Caloric Restriction Preserves Mitochondrial Function in Senescence without Increasing Mitochondrial Biogenesis’, Cell Metabolism, 16(6), pp. 777–788. Available at: https://doi.org/10.1016/j.cmet.2012.11.003.
Larsson, N.G. (2010) ‘Somatic mitochondrial DNA mutations in mammalian aging’, Annual Review of Biochemistry, 79, pp. 683–706. Available at: https://doi.org/10.1146/annurev-biochem-060408-093701.
Leonov, A. et al. (2017) ‘Caloric restriction extends yeast chronological lifespan via a mechanism linking cellular aging to cell cycle regulation, maintenance of a quiescent state, entry into a non-quiescent state and survival in the non-quiescent state’, Oncotarget, 8(41), pp. 69328–69350. Available at: https://doi.org/10.18632/oncotarget.20614.
Li, K. et al. (2023) ‘The Saccharomyces cerevisiae acetyltransferase Gcn5 exerts antagonistic pleiotropic effects on chronological ageing’, 15(20), pp. 10915–10937.
Li, Y. et al. (2023) ‘Article Gcn5- and Bre1-mediated Set2 degradation promotes chronological aging of Saccharomyces cerevisiae ll ll Gcn5- and Bre1-mediated Set2 degradation promotes chronological aging of Saccharomyces cerevisiae’, CellReports, 42(10), p. 113186. Available at: https://doi.org/10.1016/j.celrep.2023.113186.
Lin, S.J., Defossez, P.A. and Guarente, L. (2000) ‘Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae’, Science, 289(5487), pp. 2126–2128. Available at:
https://doi.org/10.1126/science.289.5487.2126.
Longo, V.D. (2013) ‘Replicative and Chronological Aging in Saccharomyces cerevisiae’, 16(1), pp. 18–31. Available at: https://doi.org/10.1016/j.cmet.2012.06.002.Replicative.
Longo, V.D., Mitteldorf, J. and Skulachev, V.P. (2005) ‘Programmed and altruistic ageing’, 6(November), pp. 866–872.
Ludovico, P. et al. (2001) ‘Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid’, pp. 2409–2415.
Mallick, S. et al. (2025) ‘Heliyon Yeast cells experience chronological life span extension under prolonged glucose starvation’, Heliyon, 11(4), p. e42898. Available at: https://doi.org/10.1016/j.heliyon.2025.e42898.
Maslanka, R., Kwolek-Mirek, M. and Zadrag-Tecza, R. (2017) ‘Consequences of calorie restriction and calorie excess for the physiological parameters of the yeast Saccharomyces cerevisiae cells’, FEMS Yeast Research, 17(8), pp. 1–15. Available at: https://doi.org/10.1093/femsyr/fox087.
Mehrabani, S. et al. (2020) ‘The effect of fasting or calorie restriction on mitophagy induction: a literature review’, (August), pp. 1447–1458. Available at:
https://doi.org/10.1002/jcsm.12611.
Mesquita, A. et al. (2010) ‘Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H 2 O 2 and superoxide dismutase activity’, 107(34), pp. 15123–15128. Available at: https://doi.org/10.1073/pnas.1004432107.
Miyakawa, I. (2017) ‘Organization and dynamics of yeast mitochondrial nucleoids’, Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 93(5), pp. 339–359. Available at: https://doi.org/10.2183/pjab.93.021.
Mutlu, B. and Puigserver, P. (2021) ‘GCN5 acetyltransferase in cellular energetic and metabolic processes’, Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1864(2), p. 194626. Available at:
https://doi.org/10.1016/j.bbagrm.2020.194626.
Ocampo, A. and Barrientos, A. (2011) ‘Quick and reliable assessment of chronological life span in yeast cell populations by flow cytometry’, Mechanisms of Ageing and Development, 132(6–7), pp. 315–323. Available at:
https://doi.org/10.1016/j.mad.2011.06.007.
Okada, N., Ogawa, J. and Shima, J. (2014) ‘stress tolerance using yeast heterozygous deletion collection’, 14, pp. 425–434. Available at: https://doi.org/10.1111/1567-1364.12136.
Olivares-marin, I.K. et al. (2018) ‘Saccharomyces cerevisiae Exponential Growth Kinetics in Batch Culture to Analyze Respiratory and Fermentative Metabolism’, (September), pp. 1–10. Available at: https://doi.org/10.3791/58192.
Pedruzzi, I. et al. (2003) ‘TOR and PKA Signaling Pathways Converge on the Protein Kinase Rim15 to Control Entry into G 0’, 12, pp. 1607–1613.
Pintus, F., Floris, G. and Rufini, A. (2012) ‘Nutrient availability links mitochondria , apoptosis , and obesity’, 4(11), pp. 734–741.
Ramos-gomez, M. et al. (2017) ‘Resveratrol induces mitochondrial dysfunction and decreases chronological life span of Saccharomyces cerevisiae in a glucose-dependent manner’, pp. 241–251. Available at:
https://doi.org/10.1007/s10863-017-9709-9.
Ray, P.D., Huang, B. and Tsuji, Y. (2012) ‘Reactive oxygen species ( ROS ) homeostasis and redox regulation in cellular signaling’, Cellular Signalling, 24(5), pp. 981–990. Available at: https://doi.org/10.1016/j.cellsig.2012.01.008.
Repressor, T.A. (2014) ‘The Switch from Fermentation to Respiration in Saccharomyces cerevisiae Is Regulated by the Ert1’, 198(October), pp. 547–560. Available at: https://doi.org/10.1534/genetics.114.168609.
Roger, F. et al. (2020) ‘Peroxiredoxin promotes longevity and H 2 O 2 -resistance in yeast through redox- modulation of protein kinase A’, pp. 1–32.
Sakai, M. et al. (2016) ‘The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch’, Nature Communications, 7, pp. 1–15. Available at: https://doi.org/10.1038/ncomms13147.
Sanz, A. et al. (no date) ‘Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins’. Available at: https://doi.org/10.1096/fj.05.
Scholle, L.M. et al. (no date) ‘The Effect of Resveratrol on Mitochondrial Function in Myoblasts of Patients with the Common m.3243A>G Mutation’.
Scott, I. et al. (2014) ‘GCN5-like protein 1 (GCN5L1) controls mitochondrial content through coordinated regulation of mitochondrial biogenesis and mitophagy’, Journal of Biological Chemistry, 289(5), pp. 2864–2872. Available at: https://doi.org/10.1074/jbc.M113.521641.
Shivarathri, R. et al. (2019) ‘The Fungal Histone Acetyl Transferase Gcn5 Controls Virulence of the Human Pathogen Candida albicans through Multiple Pathways’, (January), pp. 1–18. Available at: https://doi.org/10.1038/s41598-019-45817-5.
Shokolenko, I. et al. (2009) ‘Oxidative stress induces degradation of mitochondrial DNA’, 37(8), pp. 2539–2548. Available at: https://doi.org/10.1093/nar/gkp100.
Skinner, C. and Lin, S. (2010) ‘Effects of calorie restriction on life span of microorganisms’, pp. 817–828. Available at: https://doi.org/10.1007/s00253-010-2824-8.
Sudiyani, Y., Prastya, M.E. and Maryana, R. (no date) ‘The Budding Yeast Saccharomyces cerevisiae as a Valuable Model Organism for Investigating Anti-Aging Compounds’, pp. 1–12. Available at: https://doi.org/10.1088/1755-1315/299/1/012059.
Tahara, E.B. et al. (2013) ‘Calorie Restriction Hysteretically Primes Aging Saccharomyces cerevisiae toward More Effective Oxidative Metabolism’, 8(2), pp. 1–11. Available at: https://doi.org/10.1371/journal.pone.0056388.
Taormina, G. and Mirisola, M.G. (2014) ‘Calorie restriction in mammals and simple model organisms’, BioMed Research International, 2014. Available at: https://doi.org/10.1155/2014/308690.
Toledano, M.B., Labarre, J. and Nystro, T. (2011) ‘Article Life Span Extension and H 2 O 2 Resistance Elicited by Caloric Restriction Require the Peroxiredoxin Tsa1 in Saccharomyces cerevisiae’, pp. 823–833. Available at: https://doi.org/10.1016/j.molcel.2011.07.027.
Tsang, F. and Lin, S. (2016) ‘longevity’, 10(4), pp. 333–357. Available at: https://doi.org/10.1007/s11515-015-1367-x.Less.
Wallis, O.C. and Whittaker, P.A. (1974) ‘Induction of petite mutation in yeast by starvation in glycerol’, Journal of General Microbiology, 84(1), pp. 11–18. Available at: https://doi.org/10.1099/00221287-84-1-11.
Wanke, V., Pedruzzi, I. and Virgilio, C. De (2005) ‘cyclin – CDK complex’, 24(24), pp. 4271–4278. Available at: https://doi.org/10.1038/sj.emboj.7600889.
Wei, M. et al. (2008) ‘Life Span Extension by Calorie Restriction Depends on Rim15 and Transcription Factors Downstream of Ras / PKA , Tor , and Sch9’, 4(1). Available at: https://doi.org/10.1371/journal.pgen.0040013.
Werner-washburne, M. et al. (1993) ‘Stationary Phase in the Yeast Saccharomyces cerevisiae’, 57(2), pp. 383–401.
Whittaker, P.A. (1972) ‘Mechanism of Mitochondrial Mutation in Yeast’.
William, A. and Michael, L.Æ. (2007) ‘Healthy aging : regulation of the metabolome by cellular redox modulation and prooxidant signaling systems : the essential roles of superoxide anion and hydrogen peroxide’, pp. 445–467. Available at: https://doi.org/10.1007/s10522-007-9096-4.
Xue-franzén, Y. et al. (2010) ‘Genome-wide characterisation of the Gcn5 histone acetyltransferase in budding yeast during stress adaptation reveals evolutionarily conserved and diverged roles’.
Zhang, Z. et al. (2023) ‘The impact of oxidative stress- induced mitochondrial dysfunction on diabetic microvascular complications’, (February), pp. 1–15. Available at: https://doi.org/10.3389/fendo.2023.1112363.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Author(s) will retain the copyright of their own articles. By submitting the article to Bioresearch Communications (BRC), the author(s) have granted the BRC for the use of the article.
