Mutation Analysis of The MT-ATP6 Gene in Breast Cancer Tissue Samples of Bangladeshi Women
DOI:
https://doi.org/10.3329/brc.v12i1.86766Keywords:
Breast Cancer, Mitochondria, MT-ATP6 gene mutation, ATP synthase, Polymerase chain reactionAbstract
Background and aim: Mitochondria are crucial for cellular energy production and apoptosis. It plays a crucial part in the development of cancer. This pilot study looked at mitochondrial ATP6 polymorphisms as a potential preliminary indicator for breast cancer in Bangladeshi women. Materials and Methods: The MT-ATP6 gene of mitochondrial DNA was sequenced from 13 breast cancer tissue samples. Sequencing data were compared with the Revised Cambridge Reference Sequence (rCRS) to detect polymorphisms. Blood samples from 33 healthy women were also analyzed as controls to account for variations. Results: A total of five mutations were identified by analysing the sequences of patient samples. Three of the five mutations (m.8701A>G, m.8860A>G, and m.9094C>T) were nonsynonymous, and two (m.8772T>C and 8790G>A) were synonymous. The m.8701A>G and m.8860A>G mutations were detected in both cancer patients and healthy controls and no statistical significance was calculated due to the small sample size. The m.8701A>G mutation was observed in 4 out of 13 (30.77%) cancer patients, and the m.8860A>G mutation was observed in 11 out of 13 (84.61%) cancer patients. Focus was placed on the m.9094C>T mutation, which was observed in two out of thirteen (15.38%) breast cancer patients, and was entirely absent in the control group (0/33). This mutation in Bangladeshi women results in a Leucine (L) to Phenylalanine (F) substitution at codon 120. According to PolyPhen-2 analysis, this variant is "possibly damaging," with a score of 0.855. Structural analysis using the HOPE tool revealed alterations in protein structure, while DynaMut confirmed impacts on structural features. These findings suggest that the m.9094C>T mutation may be indirectly linked to an increased risk of breast cancer. Conclusion: The detection of m.9094C>T exclusively in two patient samples, coupled with its predicted pathogenicity, identifies this variant as an interesting candidate for future, large-scale investigation. These preliminary findings do not establish a definitive association or heritability but suggest that variants in the MT-ATP6 gene warrant further functional and epidemiological investigation as potential susceptibility factors for breast cancer.
References
Arnold, M., Morgan, E., Rumgay, H., Mafra, A., Singh, D., Laversanne, M., Vignat, J., Gralow, J.R., Cardoso, F., Siesling, S. and Soerjomataram, I. (2022) ‘Current and future burden of breast cancer: Global statistics for 2020 and 2040’, Breast, 66(September), pp. 15–23. Available at: https://doi.org/10.1016/j.breast.2022.08.010.
Bai, R.K., Leal, S.M., Covarrubias, D., Liu, A. and Wong, L.J.C. (2007) ‘Mitochondrial genetic background modifies breast cancer risk’, Cancer Research, 67(10), pp. 4687–4694. Available at: https://doi.org/10.1158/0008-5472.CAN-06-3554.
Barzaman, K., Karami, J., Zarei, Z., Hosseinzadeh, A., Kazemi, M.H., Moradi-Kalbolandi, S., Safari, E. and Farahmand, L. (2020) ‘Breast cancer: Biology, biomarkers, and treatments’, International Immunopharmacology, 84(April). Available at: https://doi.org/10.1016/j.intimp.2020.106535.
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) ‘Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries’, CA: A Cancer Journal for Clinicians, 68(6), pp. 394–424. Available at: https://doi.org/10.3322/caac.21492.
Carelli, V., Baracca, A., Barogi, S., Pallotti, F., Valentino, M.L., Montagna, P., Zeviani, M., Pini, A., Lenaz, G. and Baruzzi, A. (2002) ‘Biochemical-clinical correlation in patients with different loads of the mitochondrial DNA T8993G mutation’, Archives of neurology, 59(2), pp. 264–270.
Chen, C., Ko, Y., Delannoy, M., Ludtke, S.J., Chiu, W. and Pedersen, P.L. (2004) ‘Mitochondrial ATP synthasome. Three-dimensional structure by electron microscopy of the ATP synthase in complex formation with carriers for P i and ADP/ATP’, Journal of Biological Chemistry, 279(30), pp. 31761–31768. Available at: https://doi.org/10.1074/jbc.M401353200.
Choi, B.O., Jung, H.H., Kim, J., Eun, M.C., Sun, Y.C., Su, J.H., Hyang, W.L., Song, J.K. and Ki, W.C. (2008) ‘A MELAS syndrome family harboring two mutations in mitochondrial genome’, Experimental and Molecular Medicine, 40(3), pp. 354–360. Available at: https://doi.org/10.3858/emm.2008.40.3.354.
Dautant, A., Meier, T., Hahn, A., Tribouillard-Tanvier, D., di Rago, J.P. and Kucharczyk, R. (2018) ‘ATP Synthase Diseases Of Mitochondrial Genetic Origin’, Frontiers in Physiology, 9(APR), pp. 1–16. Available at: https://doi.org/10.3389/fphys.2018.00329.
DiMauro, S. and Schon, E.A. (2001) ‘Mitochondrial DNA mutations in human disease’, American journal of medical genetics, 106(1), pp. 18–26.
Fariss, M.W., Chan, C.B., Patel, M., Van Houten, B. and Orrenius, S. (2005) ‘Role of mitochondria in toxic oxidative stress’, Molecular Interventions, 5(2), pp. 94–111. Available at: https://doi.org/10.1124/mi.5.2.7.
Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D.M., Piñeros, M., Znaor, A. and Bray, F. (2021) ‘Cancer statistics for the year 2020: An overview’, International Journal of Cancer, 149(4), pp. 778–789. Available at: https://doi.org/10.1002/ijc.33588.
Ferlay, J., Shin, H.R., Bray, F., Forman, D., Mathers, C. and Parkin, D.M. (2010) ‘Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008’, International Journal of Cancer, 127(12), pp. 2893–2917. Available at: https://doi.org/10.1002/ijc.25516.
Gallicchio, L., Devasia, T.P., Tonorezos, E., Mollica, M.A. and Mariotto, A. (2022) ‘Estimation of the Number of Individuals Living with Metastatic Cancer in the United States’, Journal of the National Cancer Institute, 114(11), pp. 1476–1483. Available at: https://doi.org/10.1093/jnci/djac158.
Ghaffarpour, M., Mahdian, R., Fereidooni, F., Kamalidehghan, B., Moazami, N. and Houshmand, M. (2014) ‘The mitochondrial ATPase6 gene is more susceptible to mutation than the ATPase8 gene in breast cancer patients’, Cancer Cell International, 14(1), pp. 1–9. Available at: https://doi.org/10.1186/1475-2867-14-21.
Gomes, L.C., Benedetto, G. Di and Scorrano, L. (2011) ‘During autophagy mitochondria elongate, are spared from degradation and sustain cell viability’, Nature Cell Biology, 13(5), pp. 589–598. Available at: https://doi.org/10.1038/ncb2220.
Grzybowska-szatkowska, L., Ślaska, B., Rzymowska, J., Brzozowska, A. and Floriańczyk, B. (2014) ‘Novel mitochondrial mutations in the ATP6 and ATP8 genes in patients with breast cancer’, Molecular Medicine Reports, 10(4), pp. 1772–1778. Available at: https://doi.org/10.3892/mmr.2014.2471.
Houshmand, M., Montazeri, M., Kuchekian, N., Noohi, F., Nozar, G. and Zamani, A. (2011) ‘Is 8860 variation a rare polymorphism or associated as a secondary effect in HCM disease?’, Archives of Medical Science, 7(2), pp. 242–246. Available at: https://doi.org/10.5114/aoms.2011.22074.
Houštěk, J., Pícková, A., Vojtíšková, A., Mráček, T., Pecina, P. and Ješina, P. (2006) ‘Mitochondrial diseases and genetic defects of ATP synthase’, Biochimica et Biophysica Acta - Bioenergetics, 1757(9–10), pp. 1400–1405. Available at: https://doi.org/10.1016/j.bbabio.2006.04.006.
Islam, M.T., Sultana, G.N.N., Khan, R., Islam, A. and ... (2021) ‘Study on Mitochondrial ATPase6 Gene Polymorphisms as a Genetic Risk Factor for Breast Cancer in Bangladeshi Women’, International Journal of …, 3(March), pp. 18–22. Available at: https://doi.org/10.30485/IJSRDMS.2021.270577.1107.
Jonckheere, A.I., Smeitink, J.A.M. and Rodenburg, R.J.T. (2012) ‘Mitochondrial ATP synthase: Architecture, function and pathology’, Journal of Inherited Metabolic Disease, 35(2), pp. 211–225. Available at: https://doi.org/10.1007/s10545-011-9382-9.
Kato, T. (2008) ‘Role of mitochondrial DNA in calcium signaling abnormality in bipolar disorder’, Cell Calcium, 44(1), pp. 92–102. Available at: https://doi.org/10.1016/j.ceca.2007.11.005.
Kobori, T., Iwamoto, S., Takeyasu, K. and Ohtani, T. (2007) ‘Biopolymers Volume 85 / Number 4 295’, Biopolymers, 85(4), pp. 392–406. Available at: https://doi.org/10.1002/bip.
Koopman, W.J.H., Distelmaier, F., Smeitink, J.A.M. and Willems, P.H.G.M. (2013) ‘OXPHOS mutations and neurodegeneration’, The EMBO journal, 32(1), pp. 9–29.
Li, J., Huang, Q., Long, X., Guo, X., Sun, X., Jin, X., Li, Z., Ren, T., Yuan, P., Huang, X., Zhang, H. and Xing, J. (2017) ‘Mitochondrial elongation-mediated glucose metabolism reprogramming is essential for tumour cell survival during energy stress’, Oncogene, 36(34), pp. 4901–4912. Available at: https://doi.org/10.1038/onc.2017.98.
Maria Jackson, Leah Marks, G.H.W.M. and J.B.W. (2018) ‘Jackson2018.Pdf’, Essays in Biochemistry, 0(62), pp. 643–723.
Mcmahon, S. and Laframboise, T. (2014) ‘Mutational patterns in the breast cancer mitochondrial genome, with clinical correlates’, Carcinogenesis, 35(5), pp. 1046–1054. Available at: https://doi.org/10.1093/carcin/bgu012.
Meyerson, C., Van Stavern, G. and McClelland, C. (2015) ‘Leber hereditary optic neuropathy: current perspectives’, Clinical Ophthalmology (Auckland, NZ), 9, p. 1165.
Rieder, M.J., Taylor, S.L., Tobe, V.O. and Nickerson, D.A. (1998) ‘Automating the identification of DNA variations using quality-based fluorescence re-sequencing: Analysis of the human mitochondrial genome’, Nucleic Acids Research, 26(4), pp. 967–973. Available at: https://doi.org/10.1093/nar/26.4.967.
Routhier A, Astuccio M, Lahey D, Monfredo N, Johnson A, Callahan W, Partington A, Fellows K, Ouellette L, Zhidro S, Goodrow C, Smith A, Sullivan K, Simone P, Le L, Vezuli B, Zohni M, West E, Gleason D, Bryan B, Routhier, A., Astuccio, M., Lahey, D., Monfredo, N., Johnson, A., Callahan, W., Partington, A.M.Y., Fellows, K., Ouellette, L., Zhidro, S., Goodrow, C., Smith, A., Sullivan, K., Simone, P., Le, L.E.O., Vezuli, B., Zohni, M., West, E., Gleason, D. and Bryan, B. (2010) ‘Pharmacological inhibition of Rho-kinase signaling with Y-27632 blocks melanoma tumor growth’, Oncology Reports, 23(3), pp. 861–867. Available at: https://doi.org/10.3892/or.
Shamsi, T. (2021) ‘Burden of breast cancer in Bangladesh-current and future and financing treatment with link to willingness to pay’, International Journal Of Community Medicine And Public Health, 8(11), p. 5525. Available at: https://doi.org/10.18203/2394-6040.ijcmph20214295.
Story, H.L., Love, R.R., Salim, R., Roberto, A.J., Krieger, J.L. and Ginsburg, O.M. (2012) ‘Improving Outcomes from Breast Cancer in a Low-Income Country: Lessons from Bangladesh’, International Journal of Breast Cancer, 2012(Figure 1), pp. 1–9. Available at: https://doi.org/10.1155/2012/423562.
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021) ‘Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries’, CA: A Cancer Journal for Clinicians, 71(3), pp. 209–249. Available at: https://doi.org/10.3322/caac.21660.
Touhidul Islam, M., Nurun Nahar Sultana, G., Khan, R., Islam, A., Mahmud, H. and Zahir Raihan, S. (2021) ‘Study on Mitochondrial ATPase6 Gene Polymorphisms as a Genetic Risk Factor for Breast Cancer in Bangladeshi Women’, International Journal of Scientific Research In Dental and Medical Sciences, 3(March), pp. 18–22. Available at: https://doi.org/10.30485/IJSRDMS.2021.270577.1107.
Uziel, G., Moroni, I., Lamantea, E., Fratta, G.M., Ciceri, E., Carrara, F. and Zeviani, M. (1997) ‘Mitochondrial disease associated with the T8993G mutation of the mitochondrial ATPase 6 gene: A clinical, biochemical, and molecular study in six families’, Journal of Neurology Neurosurgery and Psychiatry, 63(1), pp. 16–22. Available at: https://doi.org/10.1136/jnnp.63.1.16.
Venkatesh, S., Kumar, M., Sharma, A., Kriplani, A., Ammini, A.C., Talwar, P., Agarwal, A. and Dada, R. (2010) ‘Oxidative stress and ATPase6 mutation is associated with primary ovarian insufficiency’, Archives of Gynecology and Obstetrics, 282(3), pp. 313–318. Available at: https://doi.org/10.1007/s00404-010-1444-y.
Wai, T. and Langer, T. (2016) ‘Mitochondrial Dynamics and Metabolic Regulation’, Trends in Endocrinology and Metabolism, 27(2), pp. 105–117. Available at: https://doi.org/10.1016/j.tem.2015.12.001.
Wallace, D.C., Brown, M.D. and Lott, M.T. (1999) ‘Mitochondrial DNA variation in human evolution and disease’, Gene, 238(1), pp. 211–230. Available at: https://doi.org/10.1016/S0378-1119(99)00295-4.
Wallace DC, Fan W, P. V. (2010) Mitochondrial energetics and therapeutics - PubMed. Available at: https://pubmed.ncbi.nlm.nih.gov/20078222/ (Accessed: 11 May 2024).
Ware, S.M., El-Hassan, N., Kahler, S.G., Zhang, Q., Ma, Y.W., Miller, E., Wong, B., Spicer, R.L., Craigen, W.J., Kozel, B.A., Grange, D.K. and Wong, L.J. (2009) ‘Infantile cardiomyopathy caused by a mutation in the overlapping region of mitochondrial ATPase 6 and 8 genes’, Journal of Medical Genetics, 46(5), pp. 308–314. Available at: https://doi.org/10.1136/jmg.2008.063149.
Zhu, W., Qin, W., Bradley, P., Wessel, A., Puckett, C.L. and Sauter, E.R. (2005) ‘Mitochondrial DNA mutations in breast cancer tissue and in matched nipple aspirate fluid’, Carcinogenesis, 26(1), pp. 145–152. Available at: https://doi.org/10.1093/carcin/bgh282.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Author(s) will retain the copyright of their own articles. By submitting the article to Bioresearch Communications (BRC), the author(s) have granted the BRC for the use of the article.
